{"title":"数据驱动的区域供热网络可靠性预测","authors":"Lasse Kappel Mortensen, H. Shaker","doi":"10.3390/smartcities7040067","DOIUrl":null,"url":null,"abstract":"As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"70 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Reliability Prediction for District Heating Networks\",\"authors\":\"Lasse Kappel Mortensen, H. Shaker\",\"doi\":\"10.3390/smartcities7040067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"70 4\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities7040067\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities7040067","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Data-Driven Reliability Prediction for District Heating Networks
As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.