轧制温度对 Mg-Zn-Y-Nd 合金薄板机械性能和腐蚀行为的影响

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zhibin Liu, Guangya Zhu, Wenkai Li, Di Mei, Peihua Du, Yufeng Sun, Shijie Zhu, Shaokang Guan
{"title":"轧制温度对 Mg-Zn-Y-Nd 合金薄板机械性能和腐蚀行为的影响","authors":"Zhibin Liu,&nbsp;Guangya Zhu,&nbsp;Wenkai Li,&nbsp;Di Mei,&nbsp;Peihua Du,&nbsp;Yufeng Sun,&nbsp;Shijie Zhu,&nbsp;Shaokang Guan","doi":"10.1007/s40195-024-01740-x","DOIUrl":null,"url":null,"abstract":"<div><p>There is a growing demand for degradable membranes with sufficient mechanical properties to guide tissue regeneration in dental surgery. In the present work, a two-stage rolling process in which the first rolling stage (FRS) adopted a reduction rate of 30% for six passes at various temperatures, while the second rolling stage was rolling at 200 °C for two passes, was employed to prepare a 150 μm-grade Mg–2.0Zn–0.5Y–0.5Nd (ZE21B) Mg alloy sheets for guided tissue regeneration membrane. The microstructure of the thin sheets was gradually refined with increasing rolling passes, and the thin sheets that were rolled at different FRS temperatures exhibit an ellipse texture. The thin sheets rolled at 350 °C for FRS show low elongation due to premature fracture caused by the coarse second phase particles. On account of uniform and fine grains, the thin sheets rolled at 400 °C for the FRS have proper mechanical properties: yield strength of 214.6 ± 8.5 MPa, ultimate tensile strength (UTS) of 246.8 ± 10.3 MPa and elongation to failure of 28.3 ± 1.2%. When rolling at 450 °C for FRS, proper ductility of the thin sheets has been acquired, followed by a decline in UTS since a bimodal structure with fine and coarse grain was developed. Immersion tests demonstrated the FRS temperature had no significant effect on the corrosion behavior and corrosion rate of Mg alloy sheets after 7 days’ immersion in artificial saliva solution. This research has great significance for the production of degradable Mg sheets for guided tissue regeneration membrane.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg–Zn–Y–Nd Alloy Thin Sheets\",\"authors\":\"Zhibin Liu,&nbsp;Guangya Zhu,&nbsp;Wenkai Li,&nbsp;Di Mei,&nbsp;Peihua Du,&nbsp;Yufeng Sun,&nbsp;Shijie Zhu,&nbsp;Shaokang Guan\",\"doi\":\"10.1007/s40195-024-01740-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a growing demand for degradable membranes with sufficient mechanical properties to guide tissue regeneration in dental surgery. In the present work, a two-stage rolling process in which the first rolling stage (FRS) adopted a reduction rate of 30% for six passes at various temperatures, while the second rolling stage was rolling at 200 °C for two passes, was employed to prepare a 150 μm-grade Mg–2.0Zn–0.5Y–0.5Nd (ZE21B) Mg alloy sheets for guided tissue regeneration membrane. The microstructure of the thin sheets was gradually refined with increasing rolling passes, and the thin sheets that were rolled at different FRS temperatures exhibit an ellipse texture. The thin sheets rolled at 350 °C for FRS show low elongation due to premature fracture caused by the coarse second phase particles. On account of uniform and fine grains, the thin sheets rolled at 400 °C for the FRS have proper mechanical properties: yield strength of 214.6 ± 8.5 MPa, ultimate tensile strength (UTS) of 246.8 ± 10.3 MPa and elongation to failure of 28.3 ± 1.2%. When rolling at 450 °C for FRS, proper ductility of the thin sheets has been acquired, followed by a decline in UTS since a bimodal structure with fine and coarse grain was developed. Immersion tests demonstrated the FRS temperature had no significant effect on the corrosion behavior and corrosion rate of Mg alloy sheets after 7 days’ immersion in artificial saliva solution. This research has great significance for the production of degradable Mg sheets for guided tissue regeneration membrane.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01740-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01740-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

人们对具有足够机械性能的可降解膜的需求日益增长,以指导牙科手术中的组织再生。本研究采用两阶段轧制工艺制备了用于引导组织再生膜的 150 μm 级 Mg-2.0Zn-0.5Y-0.5Nd (ZE21B) 镁合金薄板。薄板的微观结构随着轧制次数的增加而逐渐细化,在不同 FRS 温度下轧制的薄板呈现出椭圆形纹理。在 350 °C FRS 温度下轧制的薄板由于第二相颗粒较粗而导致过早断裂,因此伸长率较低。由于晶粒均匀且细小,在 400 °C FRS 温度下轧制的薄板具有适当的机械性能:屈服强度为 214.6 ± 8.5 MPa,极限拉伸强度(UTS)为 246.8 ± 10.3 MPa,断裂伸长率为 28.3 ± 1.2%。在 450 ℃ 下轧制 FRS 时,薄板获得了适当的延展性,随后由于形成了细粒和粗粒的双峰结构,UTS 出现下降。浸泡试验表明,在人工唾液中浸泡 7 天后,FRS 温度对镁合金薄板的腐蚀行为和腐蚀速率没有明显影响。这项研究对生产用于引导组织再生膜的可降解镁薄片具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg–Zn–Y–Nd Alloy Thin Sheets

Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg–Zn–Y–Nd Alloy Thin Sheets

There is a growing demand for degradable membranes with sufficient mechanical properties to guide tissue regeneration in dental surgery. In the present work, a two-stage rolling process in which the first rolling stage (FRS) adopted a reduction rate of 30% for six passes at various temperatures, while the second rolling stage was rolling at 200 °C for two passes, was employed to prepare a 150 μm-grade Mg–2.0Zn–0.5Y–0.5Nd (ZE21B) Mg alloy sheets for guided tissue regeneration membrane. The microstructure of the thin sheets was gradually refined with increasing rolling passes, and the thin sheets that were rolled at different FRS temperatures exhibit an ellipse texture. The thin sheets rolled at 350 °C for FRS show low elongation due to premature fracture caused by the coarse second phase particles. On account of uniform and fine grains, the thin sheets rolled at 400 °C for the FRS have proper mechanical properties: yield strength of 214.6 ± 8.5 MPa, ultimate tensile strength (UTS) of 246.8 ± 10.3 MPa and elongation to failure of 28.3 ± 1.2%. When rolling at 450 °C for FRS, proper ductility of the thin sheets has been acquired, followed by a decline in UTS since a bimodal structure with fine and coarse grain was developed. Immersion tests demonstrated the FRS temperature had no significant effect on the corrosion behavior and corrosion rate of Mg alloy sheets after 7 days’ immersion in artificial saliva solution. This research has great significance for the production of degradable Mg sheets for guided tissue regeneration membrane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信