Mengmeng Ji, Xin Li, Zihe Liu, Xiaoguang Yang, Xue Zhang, Ying Li
{"title":"高铬合金在熔融锂-氯化钾共晶中的腐蚀行为","authors":"Mengmeng Ji, Xin Li, Zihe Liu, Xiaoguang Yang, Xue Zhang, Ying Li","doi":"10.1007/s40195-024-01742-9","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrochemical reprocessing utilizing a molten LiCl–KCl eutectic medium is regarded as the most promising approach for recovering uranium and transuranic elements from spent metallic nuclear fuels. However, the harsh corrosiveness of molten chloride poses a significant challenge to the durability of structural materials. Herein, we report the corrosion behavior of 304 SS, 316H SS and Inconel 800H in LiCl–KCl eutectic salt at 550 °C for 100 h under an argon atmosphere. Experimental results indicate that all three materials can form a rather continuous Cr<sub>2</sub>O<sub>3</sub>-based scale through oxidation reaction at the beginning, but only the scale developed on 800H maintains excellent protection against corrosion throughout the entire exposure period. In contrast, both 304 SS and 316H SS experience considerable active dissolution on the bare substrate under a detached scale. We suggest that the primary reasons for the outstanding resistance of 800H to molten salt corrosion are the high concentration of noble Ni in the system, which lowers the inclination for active dissolution, and the beneficial addition of Al, which accelerates the formation of a less defective Cr<sub>2</sub>O<sub>3</sub>-based scale. Our work offers an in-depth understanding on the corrosion performance of high-Cr alloys in molten chloride, insights critical for the selection and subsequent development of structural materials for pyrochemical reprocessing applications.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Behavior of High-Chromium Alloys in Molten LiCl–KCl Eutectic\",\"authors\":\"Mengmeng Ji, Xin Li, Zihe Liu, Xiaoguang Yang, Xue Zhang, Ying Li\",\"doi\":\"10.1007/s40195-024-01742-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pyrochemical reprocessing utilizing a molten LiCl–KCl eutectic medium is regarded as the most promising approach for recovering uranium and transuranic elements from spent metallic nuclear fuels. However, the harsh corrosiveness of molten chloride poses a significant challenge to the durability of structural materials. Herein, we report the corrosion behavior of 304 SS, 316H SS and Inconel 800H in LiCl–KCl eutectic salt at 550 °C for 100 h under an argon atmosphere. Experimental results indicate that all three materials can form a rather continuous Cr<sub>2</sub>O<sub>3</sub>-based scale through oxidation reaction at the beginning, but only the scale developed on 800H maintains excellent protection against corrosion throughout the entire exposure period. In contrast, both 304 SS and 316H SS experience considerable active dissolution on the bare substrate under a detached scale. We suggest that the primary reasons for the outstanding resistance of 800H to molten salt corrosion are the high concentration of noble Ni in the system, which lowers the inclination for active dissolution, and the beneficial addition of Al, which accelerates the formation of a less defective Cr<sub>2</sub>O<sub>3</sub>-based scale. Our work offers an in-depth understanding on the corrosion performance of high-Cr alloys in molten chloride, insights critical for the selection and subsequent development of structural materials for pyrochemical reprocessing applications.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01742-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01742-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
利用熔融 LiCl-KCl 共晶介质进行热化学后处理被认为是从乏金属核燃料中回收铀和超铀元素的最有前途的方法。然而,熔融氯化物的苛刻腐蚀性对结构材料的耐久性构成了巨大挑战。在此,我们报告了 304 SS、316H SS 和 Inconel 800H 在氩气环境下于 550 °C 的 LiCl-KCl 共晶盐中 100 小时的腐蚀行为。实验结果表明,这三种材料在开始时都能通过氧化反应形成相当连续的以 Cr2O3 为基础的鳞片,但只有 800H 上形成的鳞片在整个暴露期都能保持良好的防腐蚀保护。相比之下,304 SS 和 316H SS 在剥离鳞片的情况下,裸基体上都会出现相当程度的活性溶解。我们认为,800H 具有出色的耐熔盐腐蚀性能的主要原因是:体系中惰性镍的浓度较高,降低了主动溶解的倾向;而铝的有益添加则加速了缺陷较少的基于 Cr2O3 的鳞片的形成。我们的研究深入了解了高铬合金在熔融氯化物中的腐蚀性能,这些见解对于选择和后续开发用于热化学后处理应用的结构材料至关重要。
Corrosion Behavior of High-Chromium Alloys in Molten LiCl–KCl Eutectic
Pyrochemical reprocessing utilizing a molten LiCl–KCl eutectic medium is regarded as the most promising approach for recovering uranium and transuranic elements from spent metallic nuclear fuels. However, the harsh corrosiveness of molten chloride poses a significant challenge to the durability of structural materials. Herein, we report the corrosion behavior of 304 SS, 316H SS and Inconel 800H in LiCl–KCl eutectic salt at 550 °C for 100 h under an argon atmosphere. Experimental results indicate that all three materials can form a rather continuous Cr2O3-based scale through oxidation reaction at the beginning, but only the scale developed on 800H maintains excellent protection against corrosion throughout the entire exposure period. In contrast, both 304 SS and 316H SS experience considerable active dissolution on the bare substrate under a detached scale. We suggest that the primary reasons for the outstanding resistance of 800H to molten salt corrosion are the high concentration of noble Ni in the system, which lowers the inclination for active dissolution, and the beneficial addition of Al, which accelerates the formation of a less defective Cr2O3-based scale. Our work offers an in-depth understanding on the corrosion performance of high-Cr alloys in molten chloride, insights critical for the selection and subsequent development of structural materials for pyrochemical reprocessing applications.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.