Casimiro Ordóñez-Prado, J. R. Valdez-Lazalde, Héctor Flores-Magdaleno, G. Ángeles-Pérez, H. M. D. L. Santos-Posadas, E. Buendía-Rodríguez
{"title":"无人机成像的空间分辨率对森林管理植被绘图的业务影响","authors":"Casimiro Ordóñez-Prado, J. R. Valdez-Lazalde, Héctor Flores-Magdaleno, G. Ángeles-Pérez, H. M. D. L. Santos-Posadas, E. Buendía-Rodríguez","doi":"10.5154/r.rchscfa.2023.06.040","DOIUrl":null,"url":null,"abstract":"Introducción. Los drones aportan imágenes de alta resolución espacial para el seguimiento de la dinámica de la vegetación en bosques bajo manejo forestal; sin embargo, existen dudas sobre la forma más eficaz de utilizarlas con respecto a la resolución espacial. \nObjetivo. Determinar la resolución espacial más apropiada de las imágenes multiespectrales obtenidas por drones, para mapear los tipos de cobertura del suelo en bosques templados bajo manejo forestal de Hidalgo, México. \nMateriales y métodos. Las imágenes espectrales se preprocesaron en resoluciones espaciales desde \n0.2 hasta 2.5 m, a intervalos de 0.1 m. La cobertura de pinos, encinos, otras latifoliadas, herbáceas y suelo desnudo se clasificaron con el algoritmo Random Forest. El efecto de la resolución espacial en la clasificación de la cobertura terrestre se evaluó mediante la prueba no paramétrica de Kruskal-Wallis seguida de una comparación post-hoc Mann-Whitney-Wilcoxon (P < 0.05). Los errores de clasificación de las clases de cobertura se analizaron gráficamente. \nResultados. Las imágenes de 0.2 m de resolución espacial proporcionaron la mayor precisión de clasificación de la cobertura del suelo (96 %), pero fue estadísticamente similar que la de 0.7 m (P = 0.3984). La precisión más baja (82 %) se obtuvo con imágenes de 2.5 m de resolución espacial. Los errores de omisión y comisión fueron menores y constantes en las clasificaciones con imágenes de resolución espacial de 0.2 a 1.2 m. \nConclusión. Las imágenes multiespectrales (0.7 m de resolución), adquiridas con un dron de ala fija, permitieron la clasificación precisa de los tipos de cobertura y la distribución espacial exacta de pinos, encinos y otras especies de latifoliadas de un bosque templado bajo manejo forestal.","PeriodicalId":55989,"journal":{"name":"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implicaciones operativas de la resolución espacial de imágenes de drones en el mapeo de la vegetación para el manejo forestal\",\"authors\":\"Casimiro Ordóñez-Prado, J. R. Valdez-Lazalde, Héctor Flores-Magdaleno, G. Ángeles-Pérez, H. M. D. L. Santos-Posadas, E. Buendía-Rodríguez\",\"doi\":\"10.5154/r.rchscfa.2023.06.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducción. Los drones aportan imágenes de alta resolución espacial para el seguimiento de la dinámica de la vegetación en bosques bajo manejo forestal; sin embargo, existen dudas sobre la forma más eficaz de utilizarlas con respecto a la resolución espacial. \\nObjetivo. Determinar la resolución espacial más apropiada de las imágenes multiespectrales obtenidas por drones, para mapear los tipos de cobertura del suelo en bosques templados bajo manejo forestal de Hidalgo, México. \\nMateriales y métodos. Las imágenes espectrales se preprocesaron en resoluciones espaciales desde \\n0.2 hasta 2.5 m, a intervalos de 0.1 m. La cobertura de pinos, encinos, otras latifoliadas, herbáceas y suelo desnudo se clasificaron con el algoritmo Random Forest. El efecto de la resolución espacial en la clasificación de la cobertura terrestre se evaluó mediante la prueba no paramétrica de Kruskal-Wallis seguida de una comparación post-hoc Mann-Whitney-Wilcoxon (P < 0.05). Los errores de clasificación de las clases de cobertura se analizaron gráficamente. \\nResultados. Las imágenes de 0.2 m de resolución espacial proporcionaron la mayor precisión de clasificación de la cobertura del suelo (96 %), pero fue estadísticamente similar que la de 0.7 m (P = 0.3984). La precisión más baja (82 %) se obtuvo con imágenes de 2.5 m de resolución espacial. Los errores de omisión y comisión fueron menores y constantes en las clasificaciones con imágenes de resolución espacial de 0.2 a 1.2 m. \\nConclusión. Las imágenes multiespectrales (0.7 m de resolución), adquiridas con un dron de ala fija, permitieron la clasificación precisa de los tipos de cobertura y la distribución espacial exacta de pinos, encinos y otras especies de latifoliadas de un bosque templado bajo manejo forestal.\",\"PeriodicalId\":55989,\"journal\":{\"name\":\"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5154/r.rchscfa.2023.06.040\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5154/r.rchscfa.2023.06.040","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
Implicaciones operativas de la resolución espacial de imágenes de drones en el mapeo de la vegetación para el manejo forestal
Introducción. Los drones aportan imágenes de alta resolución espacial para el seguimiento de la dinámica de la vegetación en bosques bajo manejo forestal; sin embargo, existen dudas sobre la forma más eficaz de utilizarlas con respecto a la resolución espacial.
Objetivo. Determinar la resolución espacial más apropiada de las imágenes multiespectrales obtenidas por drones, para mapear los tipos de cobertura del suelo en bosques templados bajo manejo forestal de Hidalgo, México.
Materiales y métodos. Las imágenes espectrales se preprocesaron en resoluciones espaciales desde
0.2 hasta 2.5 m, a intervalos de 0.1 m. La cobertura de pinos, encinos, otras latifoliadas, herbáceas y suelo desnudo se clasificaron con el algoritmo Random Forest. El efecto de la resolución espacial en la clasificación de la cobertura terrestre se evaluó mediante la prueba no paramétrica de Kruskal-Wallis seguida de una comparación post-hoc Mann-Whitney-Wilcoxon (P < 0.05). Los errores de clasificación de las clases de cobertura se analizaron gráficamente.
Resultados. Las imágenes de 0.2 m de resolución espacial proporcionaron la mayor precisión de clasificación de la cobertura del suelo (96 %), pero fue estadísticamente similar que la de 0.7 m (P = 0.3984). La precisión más baja (82 %) se obtuvo con imágenes de 2.5 m de resolución espacial. Los errores de omisión y comisión fueron menores y constantes en las clasificaciones con imágenes de resolución espacial de 0.2 a 1.2 m.
Conclusión. Las imágenes multiespectrales (0.7 m de resolución), adquiridas con un dron de ala fija, permitieron la clasificación precisa de los tipos de cobertura y la distribución espacial exacta de pinos, encinos y otras especies de latifoliadas de un bosque templado bajo manejo forestal.
期刊介绍:
The Revista Chapingo Serie Ciencias Forestales y del Ambiente (RCHSCFA) is a scientific journal that aims to raise awareness of high-quality research products related to forest, arid, temperate and tropical environments in the world. Since its foundation in 1994, the RCHSCFA has served as a space for scientific dissemination and discussion at a national and international level among academics, researchers, undergraduate and graduate students, forest managers and public/private entities that are interested in the forest environment.
All content published in the journal first goes through a strict triple-blind review process and is published in the following formats: Scientific Articles, Review Articles, Methodologies, Technical or Technological Notes.