Vladimir M. Kravchenko, V. Malyutina-Bronskaya, H. S. Kuzmitskaya, Anton V. Nestsiaronak
{"title":"基于 ITO 和铜金属化的光学透明高导电触点,用于太阳能电池","authors":"Vladimir M. Kravchenko, V. Malyutina-Bronskaya, H. S. Kuzmitskaya, Anton V. Nestsiaronak","doi":"10.3897/j.moem.10.2.129762","DOIUrl":null,"url":null,"abstract":"This paper presents the results of obtaining and studying the electrical and optical characteristics of an optically transparent highly conductive Ni/Cu/Ti/ITO contact in order to reduce electrical resistance losses on the front side of the silicon solar cell. The topology of the contact metallization is a square 50 × 50 mm2 with an interdigitated electrode structure. A Ni/Cu/Ti contact metallization formed on ITO layer reduces the surface resistance by more than 60 times. It has been shown that the use of a Ni/Cu/Ti contact with a finger thickness of at least 1.5 μm and a width of 17 μm was formed is a good alternative to traditional contacts for silicon solar cells based on silver paste.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"26 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optically transparent highly conductive contact based on ITO and copper metallization for solar cells\",\"authors\":\"Vladimir M. Kravchenko, V. Malyutina-Bronskaya, H. S. Kuzmitskaya, Anton V. Nestsiaronak\",\"doi\":\"10.3897/j.moem.10.2.129762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of obtaining and studying the electrical and optical characteristics of an optically transparent highly conductive Ni/Cu/Ti/ITO contact in order to reduce electrical resistance losses on the front side of the silicon solar cell. The topology of the contact metallization is a square 50 × 50 mm2 with an interdigitated electrode structure. A Ni/Cu/Ti contact metallization formed on ITO layer reduces the surface resistance by more than 60 times. It has been shown that the use of a Ni/Cu/Ti contact with a finger thickness of at least 1.5 μm and a width of 17 μm was formed is a good alternative to traditional contacts for silicon solar cells based on silver paste.\",\"PeriodicalId\":18610,\"journal\":{\"name\":\"Modern Electronic Materials\",\"volume\":\"26 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/j.moem.10.2.129762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/j.moem.10.2.129762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optically transparent highly conductive contact based on ITO and copper metallization for solar cells
This paper presents the results of obtaining and studying the electrical and optical characteristics of an optically transparent highly conductive Ni/Cu/Ti/ITO contact in order to reduce electrical resistance losses on the front side of the silicon solar cell. The topology of the contact metallization is a square 50 × 50 mm2 with an interdigitated electrode structure. A Ni/Cu/Ti contact metallization formed on ITO layer reduces the surface resistance by more than 60 times. It has been shown that the use of a Ni/Cu/Ti contact with a finger thickness of at least 1.5 μm and a width of 17 μm was formed is a good alternative to traditional contacts for silicon solar cells based on silver paste.