Michael S. Souza, Silvio Ribeiro, Vanessa C. Lima, Francisco J. Cardoso, R. L. Gomes
{"title":"在城市计算中结合正则表达式和机器学习检测 SQL 注入","authors":"Michael S. Souza, Silvio Ribeiro, Vanessa C. Lima, Francisco J. Cardoso, R. L. Gomes","doi":"10.5753/jisa.2024.3799","DOIUrl":null,"url":null,"abstract":"Given the vast amount of data generated in urban environments the rapid advancements in information technology urban environments and the continual advancements in information technology, several online urban services have emerged in recent years. These services employ relational databases to store the collected data, thereby making them vulnerable to potential threats, including SQL Injection (SQLi) attacks. Hence, there is a demand for security solutions that improve detection efficiency and satisfy the response time and scalability requirements of this detection process. Based on this existing demand, this article proposes an SQLi detection solution that combines Regular Expressions (RegEx) and Machine Learning (ML), called Two Layer approach of SQLi Detection (2LD-SQLi). The RegEx acts as a first layer of filtering for protection against SQLi inputs, improving the response time of 2LD-SQLi through RegEx filtering. From this filtering, it is analyzed by an ML model to detect SQLi, increasing the accuracy. Experiments, using a real dataset, suggest that 2LD-SQLi is suitable for detecting SQLi while meeting the efficiency and scalability issues.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"1 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing\",\"authors\":\"Michael S. Souza, Silvio Ribeiro, Vanessa C. Lima, Francisco J. Cardoso, R. L. Gomes\",\"doi\":\"10.5753/jisa.2024.3799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the vast amount of data generated in urban environments the rapid advancements in information technology urban environments and the continual advancements in information technology, several online urban services have emerged in recent years. These services employ relational databases to store the collected data, thereby making them vulnerable to potential threats, including SQL Injection (SQLi) attacks. Hence, there is a demand for security solutions that improve detection efficiency and satisfy the response time and scalability requirements of this detection process. Based on this existing demand, this article proposes an SQLi detection solution that combines Regular Expressions (RegEx) and Machine Learning (ML), called Two Layer approach of SQLi Detection (2LD-SQLi). The RegEx acts as a first layer of filtering for protection against SQLi inputs, improving the response time of 2LD-SQLi through RegEx filtering. From this filtering, it is analyzed by an ML model to detect SQLi, increasing the accuracy. Experiments, using a real dataset, suggest that 2LD-SQLi is suitable for detecting SQLi while meeting the efficiency and scalability issues.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/jisa.2024.3799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jisa.2024.3799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing
Given the vast amount of data generated in urban environments the rapid advancements in information technology urban environments and the continual advancements in information technology, several online urban services have emerged in recent years. These services employ relational databases to store the collected data, thereby making them vulnerable to potential threats, including SQL Injection (SQLi) attacks. Hence, there is a demand for security solutions that improve detection efficiency and satisfy the response time and scalability requirements of this detection process. Based on this existing demand, this article proposes an SQLi detection solution that combines Regular Expressions (RegEx) and Machine Learning (ML), called Two Layer approach of SQLi Detection (2LD-SQLi). The RegEx acts as a first layer of filtering for protection against SQLi inputs, improving the response time of 2LD-SQLi through RegEx filtering. From this filtering, it is analyzed by an ML model to detect SQLi, increasing the accuracy. Experiments, using a real dataset, suggest that 2LD-SQLi is suitable for detecting SQLi while meeting the efficiency and scalability issues.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.