Leonardo Melo de Mendonça, Claudio José Cavalcante Blanco, Josias da Silva Cruz
{"title":"NEX-GDDP-CMIP6 在模拟巴西亚马逊和塞拉多生物群落降水方面的性能和预测","authors":"Leonardo Melo de Mendonça, Claudio José Cavalcante Blanco, Josias da Silva Cruz","doi":"10.1002/joc.8547","DOIUrl":null,"url":null,"abstract":"<p>The objective of this work is to provide projections of mean annual and monthly precipitation for the Brazilian Amazon and Cerrado biomes, in the near-term (2021–2040), medium-term (2041–2060) and long-term (2081–2100). The intermediate and most pessimistic Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenarios were considered. Thus, 34 high-resolution global climate models (GCMs) from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Phase 6 of the Coupled Model Intercomparison Project (CMIP6) were evaluated. The base period evaluated was from 1981 to 2010. The NEX-GDDP simulations are bias-corrected and spatially disaggregated. The Climate Hazards Group InfraRed Precipitation with Station v2.0 was chosen as the source of observed data due to low availability in situ data. The Kling-Gupta efficiency (KGE) and the global performance indicator were implemented in Google Earth Engine to evaluate the GCMs. The results show that the GCMs perform satisfactorily, except for KACE-1-0-G and IITM-ESM. The median KGE is 0.86 for the biomes. Thus, the Ensemble Model of 32 GCMs (EM-32) indicates a reduction in precipitation in the biomes, except the northern Cerrado. In the most pessimistic scenario, changes in annual precipitation range from 3% to −33% until the end of the century. The north-central Amazon and the northwestern Cerrado are the most affected regions. In general, the monthly precipitations between September and November show the most intense decreasing rates. It is estimated that 91% and 23% of areas in the Amazon and Cerrado biomes, respectively, show robust signs of reduction in mean annual precipitation. Thus, EM-32 shows more intense and robust climate projections, in comparison to the total annual precipitation of the subset of 33 raw CMIP6 models from Working Group I of the IPCC Sixth Assessment Report. Therefore, the EM-32 precipitation projections can be applied to future hydrological and hydrosedimentological investigations.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 11","pages":"3726-3741"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and projections of the NEX-GDDP-CMIP6 in simulating precipitation in the Brazilian Amazon and Cerrado biomes\",\"authors\":\"Leonardo Melo de Mendonça, Claudio José Cavalcante Blanco, Josias da Silva Cruz\",\"doi\":\"10.1002/joc.8547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this work is to provide projections of mean annual and monthly precipitation for the Brazilian Amazon and Cerrado biomes, in the near-term (2021–2040), medium-term (2041–2060) and long-term (2081–2100). The intermediate and most pessimistic Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenarios were considered. Thus, 34 high-resolution global climate models (GCMs) from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Phase 6 of the Coupled Model Intercomparison Project (CMIP6) were evaluated. The base period evaluated was from 1981 to 2010. The NEX-GDDP simulations are bias-corrected and spatially disaggregated. The Climate Hazards Group InfraRed Precipitation with Station v2.0 was chosen as the source of observed data due to low availability in situ data. The Kling-Gupta efficiency (KGE) and the global performance indicator were implemented in Google Earth Engine to evaluate the GCMs. The results show that the GCMs perform satisfactorily, except for KACE-1-0-G and IITM-ESM. The median KGE is 0.86 for the biomes. Thus, the Ensemble Model of 32 GCMs (EM-32) indicates a reduction in precipitation in the biomes, except the northern Cerrado. In the most pessimistic scenario, changes in annual precipitation range from 3% to −33% until the end of the century. The north-central Amazon and the northwestern Cerrado are the most affected regions. In general, the monthly precipitations between September and November show the most intense decreasing rates. It is estimated that 91% and 23% of areas in the Amazon and Cerrado biomes, respectively, show robust signs of reduction in mean annual precipitation. Thus, EM-32 shows more intense and robust climate projections, in comparison to the total annual precipitation of the subset of 33 raw CMIP6 models from Working Group I of the IPCC Sixth Assessment Report. Therefore, the EM-32 precipitation projections can be applied to future hydrological and hydrosedimentological investigations.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 11\",\"pages\":\"3726-3741\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8547\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8547","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Performance and projections of the NEX-GDDP-CMIP6 in simulating precipitation in the Brazilian Amazon and Cerrado biomes
The objective of this work is to provide projections of mean annual and monthly precipitation for the Brazilian Amazon and Cerrado biomes, in the near-term (2021–2040), medium-term (2041–2060) and long-term (2081–2100). The intermediate and most pessimistic Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenarios were considered. Thus, 34 high-resolution global climate models (GCMs) from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Phase 6 of the Coupled Model Intercomparison Project (CMIP6) were evaluated. The base period evaluated was from 1981 to 2010. The NEX-GDDP simulations are bias-corrected and spatially disaggregated. The Climate Hazards Group InfraRed Precipitation with Station v2.0 was chosen as the source of observed data due to low availability in situ data. The Kling-Gupta efficiency (KGE) and the global performance indicator were implemented in Google Earth Engine to evaluate the GCMs. The results show that the GCMs perform satisfactorily, except for KACE-1-0-G and IITM-ESM. The median KGE is 0.86 for the biomes. Thus, the Ensemble Model of 32 GCMs (EM-32) indicates a reduction in precipitation in the biomes, except the northern Cerrado. In the most pessimistic scenario, changes in annual precipitation range from 3% to −33% until the end of the century. The north-central Amazon and the northwestern Cerrado are the most affected regions. In general, the monthly precipitations between September and November show the most intense decreasing rates. It is estimated that 91% and 23% of areas in the Amazon and Cerrado biomes, respectively, show robust signs of reduction in mean annual precipitation. Thus, EM-32 shows more intense and robust climate projections, in comparison to the total annual precipitation of the subset of 33 raw CMIP6 models from Working Group I of the IPCC Sixth Assessment Report. Therefore, the EM-32 precipitation projections can be applied to future hydrological and hydrosedimentological investigations.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions