{"title":"无需参数估计过程的新型分数阶灰色预测模型","authors":"Yadong Wang, Chong Liu","doi":"10.3390/fractalfract8070396","DOIUrl":null,"url":null,"abstract":"The fractional-order grey prediction model is widely recognized for its performance in time series prediction tasks with small sample characteristics. However, its parameter-estimation method, namely the least squares method, limits the predictive performance of the model and requires time to address the ill-conditioning of the system. To address these issues, this paper proposes a novel parameter-acquisition method treating structural parameters as hyperparameters, obtained through the marine predators optimization algorithm. The experimental analysis on three datasets validate the effectiveness of the method proposed in this paper.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process\",\"authors\":\"Yadong Wang, Chong Liu\",\"doi\":\"10.3390/fractalfract8070396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional-order grey prediction model is widely recognized for its performance in time series prediction tasks with small sample characteristics. However, its parameter-estimation method, namely the least squares method, limits the predictive performance of the model and requires time to address the ill-conditioning of the system. To address these issues, this paper proposes a novel parameter-acquisition method treating structural parameters as hyperparameters, obtained through the marine predators optimization algorithm. The experimental analysis on three datasets validate the effectiveness of the method proposed in this paper.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8070396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process
The fractional-order grey prediction model is widely recognized for its performance in time series prediction tasks with small sample characteristics. However, its parameter-estimation method, namely the least squares method, limits the predictive performance of the model and requires time to address the ill-conditioning of the system. To address these issues, this paper proposes a novel parameter-acquisition method treating structural parameters as hyperparameters, obtained through the marine predators optimization algorithm. The experimental analysis on three datasets validate the effectiveness of the method proposed in this paper.