{"title":"近期 2 月西南地区强降温事件日益频繁","authors":"Sun Chang, Xiao Zi-Niu","doi":"10.1002/joc.8550","DOIUrl":null,"url":null,"abstract":"<p>A strong cooling event refers to a sharp change in the average temperature over a short period. The rapid change of temperature has important effect on human health and is highly concerned recent years. Based on the observed temperature data set from stations in Southwest China (SWC) from 1979 to 2017, this paper analyses the characteristics of the strong cooling event (SCE). The result shows that SCE occurs with the highest frequency during the time from February to May. Among them, the frequency of SCE in February exhibits an abrupt change before and after 2005 with a significant increase. Further study reveals that the change of SCE frequency in February is associated with the large-scale background circulation patterns. After 2005, there is a cyclonic circulation anomaly in Northeast Asia and an anticyclonic circulation anomaly in the Tibet Plateau (TP). This pattern provides a favourable condition for the southward movement of cold air mass, thereby increasing the frequency of SCE in SWC. Furthermore, it is revealed that there is a strong correlation between the variation of SCE frequency in February and sea surface temperatures (SST) in the Northwest Pacific in January before 2005. The cold SST anomaly could favour the occurrence of extreme TD events in SWC through vertical circulation. After 2005, the correlation between SCE and Northwest Pacific SST is not significant. The sea ice in the northern Barents Sea and Kara Sea becomes the dominant impact factor. The abnormally low sea ice concentration is conducive to strengthen the meridional circulation over East Asia, leading to an increasing frequency of SCE in SWC.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 11","pages":"3778-3791"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The recent increasing frequency of strong cooling event in Southwest China in February\",\"authors\":\"Sun Chang, Xiao Zi-Niu\",\"doi\":\"10.1002/joc.8550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A strong cooling event refers to a sharp change in the average temperature over a short period. The rapid change of temperature has important effect on human health and is highly concerned recent years. Based on the observed temperature data set from stations in Southwest China (SWC) from 1979 to 2017, this paper analyses the characteristics of the strong cooling event (SCE). The result shows that SCE occurs with the highest frequency during the time from February to May. Among them, the frequency of SCE in February exhibits an abrupt change before and after 2005 with a significant increase. Further study reveals that the change of SCE frequency in February is associated with the large-scale background circulation patterns. After 2005, there is a cyclonic circulation anomaly in Northeast Asia and an anticyclonic circulation anomaly in the Tibet Plateau (TP). This pattern provides a favourable condition for the southward movement of cold air mass, thereby increasing the frequency of SCE in SWC. Furthermore, it is revealed that there is a strong correlation between the variation of SCE frequency in February and sea surface temperatures (SST) in the Northwest Pacific in January before 2005. The cold SST anomaly could favour the occurrence of extreme TD events in SWC through vertical circulation. After 2005, the correlation between SCE and Northwest Pacific SST is not significant. The sea ice in the northern Barents Sea and Kara Sea becomes the dominant impact factor. The abnormally low sea ice concentration is conducive to strengthen the meridional circulation over East Asia, leading to an increasing frequency of SCE in SWC.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 11\",\"pages\":\"3778-3791\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8550\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8550","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The recent increasing frequency of strong cooling event in Southwest China in February
A strong cooling event refers to a sharp change in the average temperature over a short period. The rapid change of temperature has important effect on human health and is highly concerned recent years. Based on the observed temperature data set from stations in Southwest China (SWC) from 1979 to 2017, this paper analyses the characteristics of the strong cooling event (SCE). The result shows that SCE occurs with the highest frequency during the time from February to May. Among them, the frequency of SCE in February exhibits an abrupt change before and after 2005 with a significant increase. Further study reveals that the change of SCE frequency in February is associated with the large-scale background circulation patterns. After 2005, there is a cyclonic circulation anomaly in Northeast Asia and an anticyclonic circulation anomaly in the Tibet Plateau (TP). This pattern provides a favourable condition for the southward movement of cold air mass, thereby increasing the frequency of SCE in SWC. Furthermore, it is revealed that there is a strong correlation between the variation of SCE frequency in February and sea surface temperatures (SST) in the Northwest Pacific in January before 2005. The cold SST anomaly could favour the occurrence of extreme TD events in SWC through vertical circulation. After 2005, the correlation between SCE and Northwest Pacific SST is not significant. The sea ice in the northern Barents Sea and Kara Sea becomes the dominant impact factor. The abnormally low sea ice concentration is conducive to strengthen the meridional circulation over East Asia, leading to an increasing frequency of SCE in SWC.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions