S. Galović, Aleksa I. Djordjevic, Bojan Z. Kovacevic, K. Djordjevic, Dalibor Chevizovich
{"title":"局部热力学非平衡对复杂系统光热诱导声学响应的影响","authors":"S. Galović, Aleksa I. Djordjevic, Bojan Z. Kovacevic, K. Djordjevic, Dalibor Chevizovich","doi":"10.3390/fractalfract8070399","DOIUrl":null,"url":null,"abstract":"In this paper, the time-resolved model of the photoacoustic signal for samples with a complex inner structure is derived including local non-equilibrium of structural elements with multiple degrees of freedom, i.e., structural entropy of the system. The local non-equilibrium is taken into account through the fractional operator. By analyzing the model for two types of time-dependent excitation, a very short pulse and a very long pulse, it is shown that the rates of non-equilibrium relaxations in complex samples can be measured by applying the derived model and time-domain measurements. Limitations of the model and further directions of its development are discussed.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"138 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Local Thermodynamic Non-Equilibrium to Photothermally Induced Acoustic Response of Complex Systems\",\"authors\":\"S. Galović, Aleksa I. Djordjevic, Bojan Z. Kovacevic, K. Djordjevic, Dalibor Chevizovich\",\"doi\":\"10.3390/fractalfract8070399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the time-resolved model of the photoacoustic signal for samples with a complex inner structure is derived including local non-equilibrium of structural elements with multiple degrees of freedom, i.e., structural entropy of the system. The local non-equilibrium is taken into account through the fractional operator. By analyzing the model for two types of time-dependent excitation, a very short pulse and a very long pulse, it is shown that the rates of non-equilibrium relaxations in complex samples can be measured by applying the derived model and time-domain measurements. Limitations of the model and further directions of its development are discussed.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"138 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8070399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Local Thermodynamic Non-Equilibrium to Photothermally Induced Acoustic Response of Complex Systems
In this paper, the time-resolved model of the photoacoustic signal for samples with a complex inner structure is derived including local non-equilibrium of structural elements with multiple degrees of freedom, i.e., structural entropy of the system. The local non-equilibrium is taken into account through the fractional operator. By analyzing the model for two types of time-dependent excitation, a very short pulse and a very long pulse, it is shown that the rates of non-equilibrium relaxations in complex samples can be measured by applying the derived model and time-domain measurements. Limitations of the model and further directions of its development are discussed.