{"title":"关于 F-Bernstein 多项式","authors":"Alper Erdem, Orhan Dişkaya, H.J.J. Menken","doi":"10.3842/umzh.v76i5.7439","DOIUrl":null,"url":null,"abstract":"UDC 517.5\nWe construct a new Bernstein operator, which is called the \n\n F\n\n-Bernstein operator obtained by using the \n\n F\n\n-factorial (Fibonacci factorial) and the Fibonomial (Fibonacci binomial). Then we examine the \n\n F\n\n-Bernstein basis polynomials and some of their properties. Moreover, we acquire certain connection between the \n\n F\n\n-Bernstein polynomials and the Fibonacci numbers. ","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>F</mml:mi>\\n</mml:mrow>\\n</mml:math>-Bernstein polynomials\",\"authors\":\"Alper Erdem, Orhan Dişkaya, H.J.J. Menken\",\"doi\":\"10.3842/umzh.v76i5.7439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UDC 517.5\\nWe construct a new Bernstein operator, which is called the \\n\\n F\\n\\n-Bernstein operator obtained by using the \\n\\n F\\n\\n-factorial (Fibonacci factorial) and the Fibonomial (Fibonacci binomial). Then we examine the \\n\\n F\\n\\n-Bernstein basis polynomials and some of their properties. Moreover, we acquire certain connection between the \\n\\n F\\n\\n-Bernstein polynomials and the Fibonacci numbers. \",\"PeriodicalId\":163365,\"journal\":{\"name\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/umzh.v76i5.7439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/umzh.v76i5.7439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UDC 517.5
We construct a new Bernstein operator, which is called the
F
-Bernstein operator obtained by using the
F
-factorial (Fibonacci factorial) and the Fibonomial (Fibonacci binomial). Then we examine the
F
-Bernstein basis polynomials and some of their properties. Moreover, we acquire certain connection between the
F
-Bernstein polynomials and the Fibonacci numbers.