{"title":"共享三个值的同态函数及其移位","authors":"Sujoy Majumder, Pradip Das","doi":"10.3842/umzh.v76i5.7502","DOIUrl":null,"url":null,"abstract":"UDC 517.5\nWe discuss the problem of uniqueness of a meromorphic function \n\n f\n \n (\n z\n )\n \n ,\n\n which shares \n\n \n a\n 1\n \n \n (\n z\n )\n \n\n, \n\n \n a\n 2\n \n \n (\n z\n )\n \n ,\n\n and \n\n \n a\n 3\n \n \n (\n z\n )\n \n\n CM with its shift \n\n f\n \n (\n z\n +\n c\n )\n \n\n, where \n\n \n a\n 1\n \n \n (\n z\n )\n \n\n, \n\n \n a\n 2\n \n \n (\n z\n )\n \n ,\n\n and \n\n \n a\n 3\n \n \n (\n z\n )\n \n\n are three \n\n c\n\n-periodic distinct small functions of \n\n f\n \n (\n z\n )\n \n\n and \n\n c\n ∈\n ℂ\n ∖\n \n {\n 0\n }\n \n\n. The obtained result improves the recent result of Heittokangas et al. [Complex Var. and Elliptic Equat., 56, No. 1–4, 81–92 (2011)] by dropping the assumption about the order of \n\n f\n \n (\n z\n )\n \n\n. In addition, we introduce a way of characterizing elliptic functions in terms of meromorphic functions sharing values with two of their shifts. Moreover, we show by a number of illustrating examples that our results are, in certain senses, best possible.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":" 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meromorphic functions sharing three values with their shift\",\"authors\":\"Sujoy Majumder, Pradip Das\",\"doi\":\"10.3842/umzh.v76i5.7502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UDC 517.5\\nWe discuss the problem of uniqueness of a meromorphic function \\n\\n f\\n \\n (\\n z\\n )\\n \\n ,\\n\\n which shares \\n\\n \\n a\\n 1\\n \\n \\n (\\n z\\n )\\n \\n\\n, \\n\\n \\n a\\n 2\\n \\n \\n (\\n z\\n )\\n \\n ,\\n\\n and \\n\\n \\n a\\n 3\\n \\n \\n (\\n z\\n )\\n \\n\\n CM with its shift \\n\\n f\\n \\n (\\n z\\n +\\n c\\n )\\n \\n\\n, where \\n\\n \\n a\\n 1\\n \\n \\n (\\n z\\n )\\n \\n\\n, \\n\\n \\n a\\n 2\\n \\n \\n (\\n z\\n )\\n \\n ,\\n\\n and \\n\\n \\n a\\n 3\\n \\n \\n (\\n z\\n )\\n \\n\\n are three \\n\\n c\\n\\n-periodic distinct small functions of \\n\\n f\\n \\n (\\n z\\n )\\n \\n\\n and \\n\\n c\\n ∈\\n ℂ\\n ∖\\n \\n {\\n 0\\n }\\n \\n\\n. The obtained result improves the recent result of Heittokangas et al. [Complex Var. and Elliptic Equat., 56, No. 1–4, 81–92 (2011)] by dropping the assumption about the order of \\n\\n f\\n \\n (\\n z\\n )\\n \\n\\n. In addition, we introduce a way of characterizing elliptic functions in terms of meromorphic functions sharing values with two of their shifts. Moreover, we show by a number of illustrating examples that our results are, in certain senses, best possible.\",\"PeriodicalId\":163365,\"journal\":{\"name\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"volume\":\" 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/umzh.v76i5.7502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/umzh.v76i5.7502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
UDC 517.5 我们讨论了一个分形函数 f ( z ) 的唯一性问题,它与其移项 f ( z + c ) 共享 a 1 ( z ) 、a 2 ( z ) 和 a 3 ( z ) CM,其中 a 1 ( z ) 、a 2 ( z ) 和 a 3 ( z ) 是 f ( z ) 的三个 c 周期不同的小函数,c ∈ ℂ ∖ { 0 }..所得到的结果改进了 Heittokangas 等人最近的结果[《复变与椭圆方程》,56,第 1-4 期,81-92(2011 年)],放弃了关于 f ( z ) 阶数的假设。 此外,我们还介绍了一种用与两个移项共享值的分形函数表征椭圆函数的方法。 此外,我们还通过一些示例说明,我们的结果在某些意义上是最佳的。
Meromorphic functions sharing three values with their shift
UDC 517.5
We discuss the problem of uniqueness of a meromorphic function
f
(
z
)
,
which shares
a
1
(
z
)
,
a
2
(
z
)
,
and
a
3
(
z
)
CM with its shift
f
(
z
+
c
)
, where
a
1
(
z
)
,
a
2
(
z
)
,
and
a
3
(
z
)
are three
c
-periodic distinct small functions of
f
(
z
)
and
c
∈
ℂ
∖
{
0
}
. The obtained result improves the recent result of Heittokangas et al. [Complex Var. and Elliptic Equat., 56, No. 1–4, 81–92 (2011)] by dropping the assumption about the order of
f
(
z
)
. In addition, we introduce a way of characterizing elliptic functions in terms of meromorphic functions sharing values with two of their shifts. Moreover, we show by a number of illustrating examples that our results are, in certain senses, best possible.