Guangjin Zhang, Tianyu Han, Tao Wen, Yi Zhao, Weijiang Chen, Qiaogen Zhang, Jinzhong Li, Ke Wang
{"title":"变压器油中电弧放电功率与冲击波峰值之间的关系","authors":"Guangjin Zhang, Tianyu Han, Tao Wen, Yi Zhao, Weijiang Chen, Qiaogen Zhang, Jinzhong Li, Ke Wang","doi":"10.1049/hve2.12462","DOIUrl":null,"url":null,"abstract":"Since 2018, there have been seven incidents of explosions and fires in ultra‐high voltage transformers in China, which are caused by internal arc discharge in transformer oil. Various pressure measurement experiments have been conducted to explore the laws of discharge pressure. However, differences in experimental conditions, discharge energy, and current peak values have led to discrepancies in the discharge power and pressure laws in these experiments. Thus, it is crucial to investigate the relationship between arc discharge power and pressure peak in transformer oil. An arc discharge test platform was established to measure pressure waveforms based on the RLC circuit. Additionally, a shadow optical path observation system was implemented to record the development process of discharge arc, bubble pulsation, and shock waves. The study reveals the positive relationship between the average power and the peak value of the shock wave; the former refers to the breakdown and expansion stage of the arc channel, and the latter is generated by the discharge, respectively. Overall, the pressure generation mechanism of arc discharge in transformer oil and the relationship between arc discharge power and peak value of discharge pressure are revealed.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":" 44","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relationship between power of arc discharge in transformer oil and peak value of the shock wave\",\"authors\":\"Guangjin Zhang, Tianyu Han, Tao Wen, Yi Zhao, Weijiang Chen, Qiaogen Zhang, Jinzhong Li, Ke Wang\",\"doi\":\"10.1049/hve2.12462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2018, there have been seven incidents of explosions and fires in ultra‐high voltage transformers in China, which are caused by internal arc discharge in transformer oil. Various pressure measurement experiments have been conducted to explore the laws of discharge pressure. However, differences in experimental conditions, discharge energy, and current peak values have led to discrepancies in the discharge power and pressure laws in these experiments. Thus, it is crucial to investigate the relationship between arc discharge power and pressure peak in transformer oil. An arc discharge test platform was established to measure pressure waveforms based on the RLC circuit. Additionally, a shadow optical path observation system was implemented to record the development process of discharge arc, bubble pulsation, and shock waves. The study reveals the positive relationship between the average power and the peak value of the shock wave; the former refers to the breakdown and expansion stage of the arc channel, and the latter is generated by the discharge, respectively. Overall, the pressure generation mechanism of arc discharge in transformer oil and the relationship between arc discharge power and peak value of discharge pressure are revealed.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\" 44\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.12462\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.12462","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The relationship between power of arc discharge in transformer oil and peak value of the shock wave
Since 2018, there have been seven incidents of explosions and fires in ultra‐high voltage transformers in China, which are caused by internal arc discharge in transformer oil. Various pressure measurement experiments have been conducted to explore the laws of discharge pressure. However, differences in experimental conditions, discharge energy, and current peak values have led to discrepancies in the discharge power and pressure laws in these experiments. Thus, it is crucial to investigate the relationship between arc discharge power and pressure peak in transformer oil. An arc discharge test platform was established to measure pressure waveforms based on the RLC circuit. Additionally, a shadow optical path observation system was implemented to record the development process of discharge arc, bubble pulsation, and shock waves. The study reveals the positive relationship between the average power and the peak value of the shock wave; the former refers to the breakdown and expansion stage of the arc channel, and the latter is generated by the discharge, respectively. Overall, the pressure generation mechanism of arc discharge in transformer oil and the relationship between arc discharge power and peak value of discharge pressure are revealed.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf