Aaqib Altaf, S. Pirzada, Ahmad M. Alghamdi, Eman S. Almotairi
{"title":"与有限交换环相关的扩展总图","authors":"Aaqib Altaf, S. Pirzada, Ahmad M. Alghamdi, Eman S. Almotairi","doi":"10.3842/umzh.v76i5.7494","DOIUrl":null,"url":null,"abstract":"<jats:p>UDC 512.5\nFor a commutative ring <mml:math>\n<mml:mrow>\n\t<mml:mi>R</mml:mi>\n</mml:mrow>\n</mml:math> with nonzero identity <mml:math>\n<mml:mrow>\n\t<mml:mn>1</mml:mn>\n\t<mml:mo>≠</mml:mo>\n\t<mml:mn>0</mml:mn>\n</mml:mrow>\n</mml:math>, let <mml:math>\n<mml:mrow>\n\t<mml:mi>Z</mml:mi>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math> denote the set of zero divisors. The total graph of <mml:math>\n<mml:mrow>\n\t<mml:mi>R</mml:mi>\n</mml:mrow>\n</mml:math> denoted by <mml:math>\n<mml:mrow>\n\t<mml:msub>\n\t\t<mml:mi>T</mml:mi>\n\t\t<mml:mi>Γ</mml:mi>\n\t</mml:msub>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math> is a simple graph in which all elements of <mml:math>\n<mml:mrow>\n\t<mml:mi>R</mml:mi>\n</mml:mrow>\n</mml:math> are vertices and any two distinct vertices <mml:math>\n<mml:mrow>\n\t<mml:mi>x</mml:mi>\n</mml:mrow>\n</mml:math> and <mml:math>\n<mml:mrow>\n\t<mml:mi>y</mml:mi>\n</mml:mrow>\n</mml:math> are adjacent if and only if <mml:math>\n<mml:mrow>\n\t<mml:mi>x</mml:mi>\n\t<mml:mo>+</mml:mo>\n\t<mml:mi>y</mml:mi>\n\t<mml:mo>∈</mml:mo>\n\t<mml:mi>Z</mml:mi>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math>. In this paper, we define an extension of the total graph denoted by <mml:math>\n<mml:mrow>\n\t<mml:mi>T</mml:mi>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:msup>\n\t\t\t<mml:mi>Γ</mml:mi>\n\t\t\t<mml:mi>e</mml:mi>\n\t\t</mml:msup>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math> with vertex set as <mml:math>\n<mml:mrow>\n\t<mml:mi>Z</mml:mi>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n\t<mml:mo>,</mml:mo>\n</mml:mrow>\n</mml:math> and two distinct vertices <mml:math>\n<mml:mrow>\n\t<mml:mi>x</mml:mi>\n</mml:mrow>\n</mml:math> and <mml:math>\n<mml:mrow>\n\t<mml:mi>y</mml:mi>\n</mml:mrow>\n</mml:math> are adjacent if and only if <mml:math>\n<mml:mrow>\n\t<mml:mi>x</mml:mi>\n\t<mml:mo>+</mml:mo>\n\t<mml:mi>y</mml:mi>\n\t<mml:mo>∈</mml:mo>\n\t<mml:msup>\n\t\t<mml:mi>Z</mml:mi>\n\t\t<mml:mo>*</mml:mo>\n\t</mml:msup>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math>, where <mml:math>\n<mml:mrow>\n\t<mml:msup>\n\t\t<mml:mi>Z</mml:mi>\n\t\t<mml:mo>*</mml:mo>\n\t</mml:msup>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math> is the set of nonzero zero divisors of <mml:math>\n<mml:mrow>\n\t<mml:mi>R</mml:mi>\n</mml:mrow>\n</mml:math>. Our main aim is to characterize the finite commutative rings whose <mml:math>\n<mml:mrow>\n\t<mml:mi>T</mml:mi>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:msup>\n\t\t\t<mml:mi>Γ</mml:mi>\n\t\t\t<mml:mi>e</mml:mi>\n\t\t</mml:msup>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math> has clique numbers <mml:math>\n<mml:mrow>\n\t<mml:mn>1,2</mml:mn>\n\t<mml:mo>,</mml:mo>\n</mml:mrow>\n</mml:math> and <mml:math>\n<mml:mrow>\n\t<mml:mn>3</mml:mn>\n</mml:mrow>\n</mml:math>. In addition, we characterize finite commutative nonlocal rings <mml:math>\n<mml:mrow>\n\t<mml:mi>R</mml:mi>\n</mml:mrow>\n</mml:math> for which the corresponding graph <mml:math>\n<mml:mrow>\n\t<mml:mi>T</mml:mi>\n\t<mml:mrow>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:msup>\n\t\t\t<mml:mi>Γ</mml:mi>\n\t\t\t<mml:mi>e</mml:mi>\n\t\t</mml:msup>\n\t\t<mml:mo form=\"prefix\">(</mml:mo>\n\t\t<mml:mi>R</mml:mi>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t\t<mml:mo form=\"postfix\">)</mml:mo>\n\t</mml:mrow>\n</mml:mrow>\n</mml:math> has the clique number <mml:math>\n<mml:mrow>\n\t<mml:mn>4.</mml:mn>\n</mml:mrow>\n</mml:math></jats:p>","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended total graph associated to finite commutative rings\",\"authors\":\"Aaqib Altaf, S. Pirzada, Ahmad M. Alghamdi, Eman S. Almotairi\",\"doi\":\"10.3842/umzh.v76i5.7494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>UDC 512.5\\nFor a commutative ring <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>R</mml:mi>\\n</mml:mrow>\\n</mml:math> with nonzero identity <mml:math>\\n<mml:mrow>\\n\\t<mml:mn>1</mml:mn>\\n\\t<mml:mo>≠</mml:mo>\\n\\t<mml:mn>0</mml:mn>\\n</mml:mrow>\\n</mml:math>, let <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>Z</mml:mi>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math> denote the set of zero divisors. The total graph of <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>R</mml:mi>\\n</mml:mrow>\\n</mml:math> denoted by <mml:math>\\n<mml:mrow>\\n\\t<mml:msub>\\n\\t\\t<mml:mi>T</mml:mi>\\n\\t\\t<mml:mi>Γ</mml:mi>\\n\\t</mml:msub>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math> is a simple graph in which all elements of <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>R</mml:mi>\\n</mml:mrow>\\n</mml:math> are vertices and any two distinct vertices <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>x</mml:mi>\\n</mml:mrow>\\n</mml:math> and <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>y</mml:mi>\\n</mml:mrow>\\n</mml:math> are adjacent if and only if <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>x</mml:mi>\\n\\t<mml:mo>+</mml:mo>\\n\\t<mml:mi>y</mml:mi>\\n\\t<mml:mo>∈</mml:mo>\\n\\t<mml:mi>Z</mml:mi>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math>. In this paper, we define an extension of the total graph denoted by <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>T</mml:mi>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:msup>\\n\\t\\t\\t<mml:mi>Γ</mml:mi>\\n\\t\\t\\t<mml:mi>e</mml:mi>\\n\\t\\t</mml:msup>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math> with vertex set as <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>Z</mml:mi>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n\\t<mml:mo>,</mml:mo>\\n</mml:mrow>\\n</mml:math> and two distinct vertices <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>x</mml:mi>\\n</mml:mrow>\\n</mml:math> and <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>y</mml:mi>\\n</mml:mrow>\\n</mml:math> are adjacent if and only if <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>x</mml:mi>\\n\\t<mml:mo>+</mml:mo>\\n\\t<mml:mi>y</mml:mi>\\n\\t<mml:mo>∈</mml:mo>\\n\\t<mml:msup>\\n\\t\\t<mml:mi>Z</mml:mi>\\n\\t\\t<mml:mo>*</mml:mo>\\n\\t</mml:msup>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math>, where <mml:math>\\n<mml:mrow>\\n\\t<mml:msup>\\n\\t\\t<mml:mi>Z</mml:mi>\\n\\t\\t<mml:mo>*</mml:mo>\\n\\t</mml:msup>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math> is the set of nonzero zero divisors of <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>R</mml:mi>\\n</mml:mrow>\\n</mml:math>. Our main aim is to characterize the finite commutative rings whose <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>T</mml:mi>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:msup>\\n\\t\\t\\t<mml:mi>Γ</mml:mi>\\n\\t\\t\\t<mml:mi>e</mml:mi>\\n\\t\\t</mml:msup>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math> has clique numbers <mml:math>\\n<mml:mrow>\\n\\t<mml:mn>1,2</mml:mn>\\n\\t<mml:mo>,</mml:mo>\\n</mml:mrow>\\n</mml:math> and <mml:math>\\n<mml:mrow>\\n\\t<mml:mn>3</mml:mn>\\n</mml:mrow>\\n</mml:math>. In addition, we characterize finite commutative nonlocal rings <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>R</mml:mi>\\n</mml:mrow>\\n</mml:math> for which the corresponding graph <mml:math>\\n<mml:mrow>\\n\\t<mml:mi>T</mml:mi>\\n\\t<mml:mrow>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:msup>\\n\\t\\t\\t<mml:mi>Γ</mml:mi>\\n\\t\\t\\t<mml:mi>e</mml:mi>\\n\\t\\t</mml:msup>\\n\\t\\t<mml:mo form=\\\"prefix\\\">(</mml:mo>\\n\\t\\t<mml:mi>R</mml:mi>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t\\t<mml:mo form=\\\"postfix\\\">)</mml:mo>\\n\\t</mml:mrow>\\n</mml:mrow>\\n</mml:math> has the clique number <mml:math>\\n<mml:mrow>\\n\\t<mml:mn>4.</mml:mn>\\n</mml:mrow>\\n</mml:math></jats:p>\",\"PeriodicalId\":163365,\"journal\":{\"name\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"volume\":\" 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/umzh.v76i5.7494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/umzh.v76i5.7494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
UDC 512.5 对于具有非零特征 1≠0 的交换环 R,让 Z(R) 表示零除数集。R 的总图用 TΓ(R)表示,是一个简单图,其中 R 的所有元素都是顶点,并且当且仅当 x+y∈Z(R) 时,任意两个不同的顶点 x 和 y 是相邻的。本文定义了总图的扩展,用 T(Γe(R))表示,顶点集为 Z(R),且当且仅当 x+y∈Z*(R) 时,两个不同的顶点 x 和 y 相邻,其中 Z*(R) 是 R 的非零零除数集。 此外,我们还描述了相应图 T(Γe(R)) 的簇数为 4 的有限交换非局部环 R 的特征。
Extended total graph associated to finite commutative rings
UDC 512.5
For a commutative ring R with nonzero identity 1≠0, let Z(R) denote the set of zero divisors. The total graph of R denoted by TΓ(R) is a simple graph in which all elements of R are vertices and any two distinct vertices x and y are adjacent if and only if x+y∈Z(R). In this paper, we define an extension of the total graph denoted by T(Γe(R)) with vertex set as Z(R), and two distinct vertices x and y are adjacent if and only if x+y∈Z*(R), where Z*(R) is the set of nonzero zero divisors of R. Our main aim is to characterize the finite commutative rings whose T(Γe(R)) has clique numbers 1,2, and 3. In addition, we characterize finite commutative nonlocal rings R for which the corresponding graph T(Γe(R)) has the clique number 4.