永磁/磁阻混合转子双定子同步电机的每安培最大扭矩控制

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shi Jin, Wuhen Jin, Hao Wang, Siyang Yu, Zhaoyu Zhang
{"title":"永磁/磁阻混合转子双定子同步电机的每安培最大扭矩控制","authors":"Shi Jin,&nbsp;Wuhen Jin,&nbsp;Hao Wang,&nbsp;Siyang Yu,&nbsp;Zhaoyu Zhang","doi":"10.1049/elp2.12453","DOIUrl":null,"url":null,"abstract":"<p>Compared with a traditional low-speed high-torque permanent magnet synchronous motor (PMSM), a permanent magnet (PM)/reluctance hybrid rotor dual-stator synchronous motor (PM/RHRDSSM) has the advantages of high torque density and high space utilization. This type of motor is composed of a \"back-to-back\" PM + reluctance hybrid rotor and an inner and outer double stator. The number of poles of the inner and outer unit motors is the same, and the inner and outer stator windings are connected in series, driven by a single inverter. Due to the special mechanical structure and electromagnetic relationship of PM/RHRDSSM, traditional PMSM and synchronous reluctance motor maximum torque per ampere (MTPA) control strategies are no longer applicable. In response to this issue, the authors establishe a PM/RHRDSSM mathematical model of stator winding series structure and propose a MTPA control strategy suitable for this new type of motor. This strategy is aimed at the special mathematical model of PM/RHRDSSM and derives the analytical expression of MTPA trajectory, which minimises the required stator current amplitude of PM/RHRDSSM at various load torques, thereby minimising the motor copper loss. Finally, the effectiveness and practicality of the proposed control strategy were verified through simulation and experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12453","citationCount":"0","resultStr":"{\"title\":\"Maximum torque per ampere control of permanent magnet/reluctance hybrid rotor dual stator synchronous motor\",\"authors\":\"Shi Jin,&nbsp;Wuhen Jin,&nbsp;Hao Wang,&nbsp;Siyang Yu,&nbsp;Zhaoyu Zhang\",\"doi\":\"10.1049/elp2.12453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compared with a traditional low-speed high-torque permanent magnet synchronous motor (PMSM), a permanent magnet (PM)/reluctance hybrid rotor dual-stator synchronous motor (PM/RHRDSSM) has the advantages of high torque density and high space utilization. This type of motor is composed of a \\\"back-to-back\\\" PM + reluctance hybrid rotor and an inner and outer double stator. The number of poles of the inner and outer unit motors is the same, and the inner and outer stator windings are connected in series, driven by a single inverter. Due to the special mechanical structure and electromagnetic relationship of PM/RHRDSSM, traditional PMSM and synchronous reluctance motor maximum torque per ampere (MTPA) control strategies are no longer applicable. In response to this issue, the authors establishe a PM/RHRDSSM mathematical model of stator winding series structure and propose a MTPA control strategy suitable for this new type of motor. This strategy is aimed at the special mathematical model of PM/RHRDSSM and derives the analytical expression of MTPA trajectory, which minimises the required stator current amplitude of PM/RHRDSSM at various load torques, thereby minimising the motor copper loss. Finally, the effectiveness and practicality of the proposed control strategy were verified through simulation and experiments.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12453\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12453\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与传统的低速高转矩永磁同步电机(PMSM)相比,永磁/磁阻混合转子双定子同步电机(PM/RHRDSSM)具有高转矩密度和高空间利用率的优点。这种电机由 "背靠背 "永磁+磁阻混合转子和内外双定子组成。内外单元电机的极数相同,内外定子绕组串联,由一台变频器驱动。由于 PM/RHRDSSM 特殊的机械结构和电磁关系,传统的 PMSM 和同步磁阻电机每安培最大转矩(MTPA)控制策略已不再适用。针对这一问题,作者建立了定子绕组串联结构的 PM/RHRDSSM 数学模型,并提出了适合这种新型电机的 MTPA 控制策略。该策略针对 PM/RHRDSSM 的特殊数学模型,推导出 MTPA 轨迹的解析表达式,使 PM/RHRDSSM 在各种负载转矩下所需的定子电流幅值最小,从而将电机的铜损降到最低。最后,通过仿真和实验验证了所提控制策略的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximum torque per ampere control of permanent magnet/reluctance hybrid rotor dual stator synchronous motor

Maximum torque per ampere control of permanent magnet/reluctance hybrid rotor dual stator synchronous motor

Compared with a traditional low-speed high-torque permanent magnet synchronous motor (PMSM), a permanent magnet (PM)/reluctance hybrid rotor dual-stator synchronous motor (PM/RHRDSSM) has the advantages of high torque density and high space utilization. This type of motor is composed of a "back-to-back" PM + reluctance hybrid rotor and an inner and outer double stator. The number of poles of the inner and outer unit motors is the same, and the inner and outer stator windings are connected in series, driven by a single inverter. Due to the special mechanical structure and electromagnetic relationship of PM/RHRDSSM, traditional PMSM and synchronous reluctance motor maximum torque per ampere (MTPA) control strategies are no longer applicable. In response to this issue, the authors establishe a PM/RHRDSSM mathematical model of stator winding series structure and propose a MTPA control strategy suitable for this new type of motor. This strategy is aimed at the special mathematical model of PM/RHRDSSM and derives the analytical expression of MTPA trajectory, which minimises the required stator current amplitude of PM/RHRDSSM at various load torques, thereby minimising the motor copper loss. Finally, the effectiveness and practicality of the proposed control strategy were verified through simulation and experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信