Elahe Moazzen, J. Mujtaba, Bruce Buchholz, Dieter Isheim, Norman Luu, David Rowell, Xiaobing Hu, Trung Ha, M. Hersam, Scott A Barnett
{"title":"利用薄膜电极对磷酸铁锂-电解质界面进行原子探针断层扫描","authors":"Elahe Moazzen, J. Mujtaba, Bruce Buchholz, Dieter Isheim, Norman Luu, David Rowell, Xiaobing Hu, Trung Ha, M. Hersam, Scott A Barnett","doi":"10.1149/1945-7111/ad5f21","DOIUrl":null,"url":null,"abstract":"\n Atom probe tomography (APT) can yield three-dimensional tomographic images at atomic-scale resolution and low-AMU elements such as Li are readily observed, making it a powerful tool for exploring battery materials interfaces. However, it is difficult to prepare APT specimen tips containing the interface of interest starting with typical particle-based battery electrodes. Here we demonstrate a methodology for reliable APT imaging of battery interfaces in which a thin film electrode geometry is used to provide well-controlled planar interfaces that are ideal for APT sample preparation and imaging. LiFePO4 (LFP) thin film electrodes, synthesized using pulsed laser deposition (PLD), were studied as an example system, with standard Li-salt electrolytes. For the results to be applicable to conventional particulate electrodes, it is important to obtain representative thin film structure and electrochemical characteristics. Thus, the effects of PLD conditions including substrate temperature, substrate crystallinity, target composition, and deposition time (number of laser pulses) on the thin film's crystallographic texture, morphology, and electrochemical performance were studied. Optimized LFP film showed good crystallinity with low-C-rate capacity of ~ 90 mAh g-1. Initial APT three-dimensional imaging of the LFP/electrolyte interface shows an ~ 10 nm cathode-electrolyte interphase layer that is enriched in F and Li.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom Probe Tomography of the LiFePO4-Electrolyte Interface Enabled By Thin Film Electrodes\",\"authors\":\"Elahe Moazzen, J. Mujtaba, Bruce Buchholz, Dieter Isheim, Norman Luu, David Rowell, Xiaobing Hu, Trung Ha, M. Hersam, Scott A Barnett\",\"doi\":\"10.1149/1945-7111/ad5f21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Atom probe tomography (APT) can yield three-dimensional tomographic images at atomic-scale resolution and low-AMU elements such as Li are readily observed, making it a powerful tool for exploring battery materials interfaces. However, it is difficult to prepare APT specimen tips containing the interface of interest starting with typical particle-based battery electrodes. Here we demonstrate a methodology for reliable APT imaging of battery interfaces in which a thin film electrode geometry is used to provide well-controlled planar interfaces that are ideal for APT sample preparation and imaging. LiFePO4 (LFP) thin film electrodes, synthesized using pulsed laser deposition (PLD), were studied as an example system, with standard Li-salt electrolytes. For the results to be applicable to conventional particulate electrodes, it is important to obtain representative thin film structure and electrochemical characteristics. Thus, the effects of PLD conditions including substrate temperature, substrate crystallinity, target composition, and deposition time (number of laser pulses) on the thin film's crystallographic texture, morphology, and electrochemical performance were studied. Optimized LFP film showed good crystallinity with low-C-rate capacity of ~ 90 mAh g-1. Initial APT three-dimensional imaging of the LFP/electrolyte interface shows an ~ 10 nm cathode-electrolyte interphase layer that is enriched in F and Li.\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad5f21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5f21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
原子探针层析成像(APT)可以产生原子级分辨率的三维层析成像,而且很容易观察到锂等低AMU元素,因此是探索电池材料界面的有力工具。然而,从典型的颗粒型电池电极开始,很难制备出含有相关界面的 APT 试样尖端。在这里,我们展示了一种对电池界面进行可靠 APT 成像的方法,其中薄膜电极的几何形状可提供良好控制的平面界面,非常适合 APT 样品制备和成像。我们以使用脉冲激光沉积(PLD)合成的磷酸铁锂(LFP)薄膜电极为例,研究了标准锂盐电解质系统。为了使研究结果适用于传统的微粒电极,必须获得具有代表性的薄膜结构和电化学特性。因此,我们研究了 PLD 条件(包括基底温度、基底结晶度、目标成分和沉积时间(激光脉冲数))对薄膜结晶纹理、形态和电化学性能的影响。优化后的 LFP 薄膜显示出良好的结晶度,低 C 速率容量约为 90 mAh g-1。LFP/ 电解质界面的初步 APT 三维成像显示,阴极-电解质相间层约为 10 nm,富含 F 和 Li。
Atom Probe Tomography of the LiFePO4-Electrolyte Interface Enabled By Thin Film Electrodes
Atom probe tomography (APT) can yield three-dimensional tomographic images at atomic-scale resolution and low-AMU elements such as Li are readily observed, making it a powerful tool for exploring battery materials interfaces. However, it is difficult to prepare APT specimen tips containing the interface of interest starting with typical particle-based battery electrodes. Here we demonstrate a methodology for reliable APT imaging of battery interfaces in which a thin film electrode geometry is used to provide well-controlled planar interfaces that are ideal for APT sample preparation and imaging. LiFePO4 (LFP) thin film electrodes, synthesized using pulsed laser deposition (PLD), were studied as an example system, with standard Li-salt electrolytes. For the results to be applicable to conventional particulate electrodes, it is important to obtain representative thin film structure and electrochemical characteristics. Thus, the effects of PLD conditions including substrate temperature, substrate crystallinity, target composition, and deposition time (number of laser pulses) on the thin film's crystallographic texture, morphology, and electrochemical performance were studied. Optimized LFP film showed good crystallinity with low-C-rate capacity of ~ 90 mAh g-1. Initial APT three-dimensional imaging of the LFP/electrolyte interface shows an ~ 10 nm cathode-electrolyte interphase layer that is enriched in F and Li.