N. Golubkina, Z. Amagova, V. Kharchenko, M. Bogachuk, M. Makarenko, M. Paleeva, A. Malinkin, Katherine Andreeva, Zulfia Kavarnakaeva, V. Matsadze, O. Murariu, G. Caruso
{"title":"叶面喷施硒酸盐对马齿苋生化特性的影响","authors":"N. Golubkina, Z. Amagova, V. Kharchenko, M. Bogachuk, M. Makarenko, M. Paleeva, A. Malinkin, Katherine Andreeva, Zulfia Kavarnakaeva, V. Matsadze, O. Murariu, G. Caruso","doi":"10.3390/horticulturae10070708","DOIUrl":null,"url":null,"abstract":"The high biological activity of cultivated and wild purslane offers broad possibilities for utilizing this plant in medicine and human nutrition. To assess the prospects of obtaining new functional food products based on the wild form of P. oleracea L., foliar biofortification of this species with sodium selenate (VI) was carried out, and the changes in leaf and seed biochemical characteristics were investigated. Selenium significantly enhanced plant yield, photosynthetic pigments and the ascorbic acid content, and showed a tendency to seed productivity increase. The application of selenium augmented quinic acid content in leaves by 1.7 times but did not affect the oxalic acid content. Oxalic acid prevailed in wild purslane and quinic acid in cultivated purslane (cv. Makovey). Seed oil in Se-enriched purslane was characterized by a two-fold decrease in saturated fatty acids and squalene and 2.3-fold decrease in malonic dialdehyde content, along with a 1.4-fold increase in ascorbic acid. Selenium supplementation resulted in an increase in total lipids and mono- and di-unsaturated fatty acids and did not affect the concentration of ω-3 fatty acids and sterol accumulation. Among the identified sterols, only the minor ones (fucosterol, 7-stigmasterol and ∆7-avenosterol) showed a slight decrease upon Se supply. Compared to seeds of cv. Makovey, wild purslane seeds had higher levels of antioxidant activity by a factor of 2 and of polyphenols by a factor of 3.2 but did not differ significantly in oil fatty acid composition. The results indicate the importance of wild purslane leaves/seeds both fortified and not fortified with Se in human nutrition and medicine.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Foliar Selenate Supplementation on Biochemical Characteristics of Purslane Weed (Portulaca oleracea L.)\",\"authors\":\"N. Golubkina, Z. Amagova, V. Kharchenko, M. Bogachuk, M. Makarenko, M. Paleeva, A. Malinkin, Katherine Andreeva, Zulfia Kavarnakaeva, V. Matsadze, O. Murariu, G. Caruso\",\"doi\":\"10.3390/horticulturae10070708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high biological activity of cultivated and wild purslane offers broad possibilities for utilizing this plant in medicine and human nutrition. To assess the prospects of obtaining new functional food products based on the wild form of P. oleracea L., foliar biofortification of this species with sodium selenate (VI) was carried out, and the changes in leaf and seed biochemical characteristics were investigated. Selenium significantly enhanced plant yield, photosynthetic pigments and the ascorbic acid content, and showed a tendency to seed productivity increase. The application of selenium augmented quinic acid content in leaves by 1.7 times but did not affect the oxalic acid content. Oxalic acid prevailed in wild purslane and quinic acid in cultivated purslane (cv. Makovey). Seed oil in Se-enriched purslane was characterized by a two-fold decrease in saturated fatty acids and squalene and 2.3-fold decrease in malonic dialdehyde content, along with a 1.4-fold increase in ascorbic acid. Selenium supplementation resulted in an increase in total lipids and mono- and di-unsaturated fatty acids and did not affect the concentration of ω-3 fatty acids and sterol accumulation. Among the identified sterols, only the minor ones (fucosterol, 7-stigmasterol and ∆7-avenosterol) showed a slight decrease upon Se supply. Compared to seeds of cv. Makovey, wild purslane seeds had higher levels of antioxidant activity by a factor of 2 and of polyphenols by a factor of 3.2 but did not differ significantly in oil fatty acid composition. The results indicate the importance of wild purslane leaves/seeds both fortified and not fortified with Se in human nutrition and medicine.\",\"PeriodicalId\":507445,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10070708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10070708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Foliar Selenate Supplementation on Biochemical Characteristics of Purslane Weed (Portulaca oleracea L.)
The high biological activity of cultivated and wild purslane offers broad possibilities for utilizing this plant in medicine and human nutrition. To assess the prospects of obtaining new functional food products based on the wild form of P. oleracea L., foliar biofortification of this species with sodium selenate (VI) was carried out, and the changes in leaf and seed biochemical characteristics were investigated. Selenium significantly enhanced plant yield, photosynthetic pigments and the ascorbic acid content, and showed a tendency to seed productivity increase. The application of selenium augmented quinic acid content in leaves by 1.7 times but did not affect the oxalic acid content. Oxalic acid prevailed in wild purslane and quinic acid in cultivated purslane (cv. Makovey). Seed oil in Se-enriched purslane was characterized by a two-fold decrease in saturated fatty acids and squalene and 2.3-fold decrease in malonic dialdehyde content, along with a 1.4-fold increase in ascorbic acid. Selenium supplementation resulted in an increase in total lipids and mono- and di-unsaturated fatty acids and did not affect the concentration of ω-3 fatty acids and sterol accumulation. Among the identified sterols, only the minor ones (fucosterol, 7-stigmasterol and ∆7-avenosterol) showed a slight decrease upon Se supply. Compared to seeds of cv. Makovey, wild purslane seeds had higher levels of antioxidant activity by a factor of 2 and of polyphenols by a factor of 3.2 but did not differ significantly in oil fatty acid composition. The results indicate the importance of wild purslane leaves/seeds both fortified and not fortified with Se in human nutrition and medicine.