变流器变压器阀侧套管中偏心接触带的电气-热应力特性分析

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2024-07-04 DOI:10.1049/hve2.12467
Yongqi Wang, Kai Liu, M. Lin, H. Tang, Xining Li, Guangning Wu
{"title":"变流器变压器阀侧套管中偏心接触带的电气-热应力特性分析","authors":"Yongqi Wang, Kai Liu, M. Lin, H. Tang, Xining Li, Guangning Wu","doi":"10.1049/hve2.12467","DOIUrl":null,"url":null,"abstract":"Ultra‐high voltage direct current (UHVDC) transmission project in China is expanding, and the technology is increasingly maturing. The converter transformer is a crucial component in the UHVDC transmission projects, and its valve‐side bushing plays a key role in ensuring the stable operation of the power system. This paper investigates the electrical–thermal‐stress distribution characteristics of the contact strip in an eccentric state. The research focuses on a section of the contact strip in the plug oil at the tail end of the bushing on the valve side of the converter. A three‐dimensional finite element simulation model is established, and the contact strip contact resistance is used to define the contact strip eccentricity. The temperature rise platform of the contact strip was constructed to verify the precision of the simulation outcomes. The study investigated the variations in electric, thermal, and stress of contact strips in various eccentric states, as well as transient development, and the four stages of contact strip deformation were summarised using calculation results, providing quantitative analysis criteria for assessing the degree of deterioration of contact strips under eccentric conditions. Through the test and calculation, it can be seen that the contact resistance of the normal contact strip changes with the height in the form of a typical first‐order exponential function. The contact resistance value is between 200 and 400 μΩ under the actual mounting height; for the brand‐new contact strip, the maximum temperature difference is 2.984 K without other interference; and after 15 min, the maximum displacements of the upper and lower half‐ring strips reached are 84.3 and 83.7 μm, respectively, due to the thermal expansion. The study results offer a theoretical foundation for understanding the failure of elastic electrical connection components in the bushing on the valve side of the converter.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of electrical–thermal‐stress characteristics for eccentric contact strip in the valve‐side bushing of converter transformer\",\"authors\":\"Yongqi Wang, Kai Liu, M. Lin, H. Tang, Xining Li, Guangning Wu\",\"doi\":\"10.1049/hve2.12467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra‐high voltage direct current (UHVDC) transmission project in China is expanding, and the technology is increasingly maturing. The converter transformer is a crucial component in the UHVDC transmission projects, and its valve‐side bushing plays a key role in ensuring the stable operation of the power system. This paper investigates the electrical–thermal‐stress distribution characteristics of the contact strip in an eccentric state. The research focuses on a section of the contact strip in the plug oil at the tail end of the bushing on the valve side of the converter. A three‐dimensional finite element simulation model is established, and the contact strip contact resistance is used to define the contact strip eccentricity. The temperature rise platform of the contact strip was constructed to verify the precision of the simulation outcomes. The study investigated the variations in electric, thermal, and stress of contact strips in various eccentric states, as well as transient development, and the four stages of contact strip deformation were summarised using calculation results, providing quantitative analysis criteria for assessing the degree of deterioration of contact strips under eccentric conditions. Through the test and calculation, it can be seen that the contact resistance of the normal contact strip changes with the height in the form of a typical first‐order exponential function. The contact resistance value is between 200 and 400 μΩ under the actual mounting height; for the brand‐new contact strip, the maximum temperature difference is 2.984 K without other interference; and after 15 min, the maximum displacements of the upper and lower half‐ring strips reached are 84.3 and 83.7 μm, respectively, due to the thermal expansion. The study results offer a theoretical foundation for understanding the failure of elastic electrical connection components in the bushing on the valve side of the converter.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.12467\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.12467","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

中国的特高压直流(UHVDC)输电工程规模不断扩大,技术日趋成熟。换流变压器是特高压直流输电工程中的关键部件,其阀侧套管对保证电力系统的稳定运行起着关键作用。本文研究了偏心状态下接触带的电热应力分布特性。研究重点是变流器阀侧衬套尾端塞子油中的一段接触带。建立了三维有限元仿真模型,并利用接触带接触电阻来定义接触带偏心。建立了接触带的温升平台,以验证模拟结果的精确性。研究探讨了接触带在各种偏心状态下的电、热和应力变化以及瞬态发展,并利用计算结果总结了接触带变形的四个阶段,为评估接触带在偏心条件下的劣化程度提供了定量分析标准。通过试验和计算可以看出,正常接触带的接触电阻随高度的变化呈典型的一阶指数函数形式。在实际安装高度下,接触电阻值在 200 至 400 μΩ 之间;对于全新的接触条,在没有其他干扰的情况下,最大温差为 2.984 K;15 min 后,由于热膨胀,上下半环条达到的最大位移分别为 84.3 和 83.7 μm。研究结果为理解变流器阀侧衬套中弹性电气连接部件的失效提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of electrical–thermal‐stress characteristics for eccentric contact strip in the valve‐side bushing of converter transformer
Ultra‐high voltage direct current (UHVDC) transmission project in China is expanding, and the technology is increasingly maturing. The converter transformer is a crucial component in the UHVDC transmission projects, and its valve‐side bushing plays a key role in ensuring the stable operation of the power system. This paper investigates the electrical–thermal‐stress distribution characteristics of the contact strip in an eccentric state. The research focuses on a section of the contact strip in the plug oil at the tail end of the bushing on the valve side of the converter. A three‐dimensional finite element simulation model is established, and the contact strip contact resistance is used to define the contact strip eccentricity. The temperature rise platform of the contact strip was constructed to verify the precision of the simulation outcomes. The study investigated the variations in electric, thermal, and stress of contact strips in various eccentric states, as well as transient development, and the four stages of contact strip deformation were summarised using calculation results, providing quantitative analysis criteria for assessing the degree of deterioration of contact strips under eccentric conditions. Through the test and calculation, it can be seen that the contact resistance of the normal contact strip changes with the height in the form of a typical first‐order exponential function. The contact resistance value is between 200 and 400 μΩ under the actual mounting height; for the brand‐new contact strip, the maximum temperature difference is 2.984 K without other interference; and after 15 min, the maximum displacements of the upper and lower half‐ring strips reached are 84.3 and 83.7 μm, respectively, due to the thermal expansion. The study results offer a theoretical foundation for understanding the failure of elastic electrical connection components in the bushing on the valve side of the converter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信