直流微电网群的小信号稳定性分析与控制参数优化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zifan Zhang, Xiangyu Yang, Shiwei Zhao, Qi Zeng, Zhanhong Liang, Mengzhen Gao
{"title":"直流微电网群的小信号稳定性分析与控制参数优化","authors":"Zifan Zhang,&nbsp;Xiangyu Yang,&nbsp;Shiwei Zhao,&nbsp;Qi Zeng,&nbsp;Zhanhong Liang,&nbsp;Mengzhen Gao","doi":"10.1049/pel2.12692","DOIUrl":null,"url":null,"abstract":"<p>Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small-signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small-signal state-space model of a DCMG cluster system at the system level, considering a multi-bus network topology. Then, the control parameters that significantly affect the small-signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto-optimal frontier of the bi-objective problem was determined using the elite non-dominated sorting genetic algorithm (NSGA-II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three-sub DCMG test system with droop control.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12692","citationCount":"0","resultStr":"{\"title\":\"Small signal stability analysis and control parameter optimization of DC microgrid cluster\",\"authors\":\"Zifan Zhang,&nbsp;Xiangyu Yang,&nbsp;Shiwei Zhao,&nbsp;Qi Zeng,&nbsp;Zhanhong Liang,&nbsp;Mengzhen Gao\",\"doi\":\"10.1049/pel2.12692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small-signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small-signal state-space model of a DCMG cluster system at the system level, considering a multi-bus network topology. Then, the control parameters that significantly affect the small-signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto-optimal frontier of the bi-objective problem was determined using the elite non-dominated sorting genetic algorithm (NSGA-II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three-sub DCMG test system with droop control.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12692\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12692\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12692","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

直流微电网(DCMG)集群因其简单、高效而在电力系统中越来越受欢迎。然而,由于系统惯性小,DCMG 群集容易受到微小干扰的影响。本文提出了一种通过优化系统主要控制参数来增强 DCMG 电网群小信号稳定性的方法。考虑到多总线网络拓扑结构,本文在系统层面给出了 DCMG 集群系统的小信号状态空间模型。然后,利用参与因子法选出了对 DCMG 小信号稳定性影响较大的控制参数。为增强系统阻尼,使用精英非支配排序遗传算法(NSGA-II)确定了双目标问题的帕累托最优前沿。使用模糊成员函数方法从生成的帕累托最优前沿中提取最优折衷方案。所提出的方法已在带下垂控制的三子 DCMG 测试系统上得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Small signal stability analysis and control parameter optimization of DC microgrid cluster

Small signal stability analysis and control parameter optimization of DC microgrid cluster

Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small-signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small-signal state-space model of a DCMG cluster system at the system level, considering a multi-bus network topology. Then, the control parameters that significantly affect the small-signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto-optimal frontier of the bi-objective problem was determined using the elite non-dominated sorting genetic algorithm (NSGA-II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three-sub DCMG test system with droop control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信