原子间电位对石墨烯原子级磨损的影响:分子动力学研究

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Xueqi Ye, Jie Zhang, Ping-Shun Chen
{"title":"原子间电位对石墨烯原子级磨损的影响:分子动力学研究","authors":"Xueqi Ye, Jie Zhang, Ping-Shun Chen","doi":"10.3390/lubricants12070245","DOIUrl":null,"url":null,"abstract":"Selecting an appropriate empirical interatomic potential is essential for accurately describing interatomic interactions and simulating the friction and wear of graphene. Four empirical potentials—Tersoff, REBO, AIREBO, and LCBOP—were employed in molecular dynamics simulations to study the wear process of graphene at the atomic scale. The frictional process of graphene was found to be divisible into three distinct phases: elastic deformation, plastic deformation, and wear. Using a progressively increasing load method, the critical load for each phase of graphene under four different empirical potentials was identified. Furthermore, the formation of Stone–Wales (SW) defects, bond distribution, bond breaking and healing, and wrinkle formation were analyzed in detail. Finally, a comparison was made with previous experimental results regarding friction coefficient and wear morphology.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Interatomic Potentials on Atomic-Scale Wear of Graphene: A Molecular Dynamics Study\",\"authors\":\"Xueqi Ye, Jie Zhang, Ping-Shun Chen\",\"doi\":\"10.3390/lubricants12070245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting an appropriate empirical interatomic potential is essential for accurately describing interatomic interactions and simulating the friction and wear of graphene. Four empirical potentials—Tersoff, REBO, AIREBO, and LCBOP—were employed in molecular dynamics simulations to study the wear process of graphene at the atomic scale. The frictional process of graphene was found to be divisible into three distinct phases: elastic deformation, plastic deformation, and wear. Using a progressively increasing load method, the critical load for each phase of graphene under four different empirical potentials was identified. Furthermore, the formation of Stone–Wales (SW) defects, bond distribution, bond breaking and healing, and wrinkle formation were analyzed in detail. Finally, a comparison was made with previous experimental results regarding friction coefficient and wear morphology.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12070245\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12070245","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

选择合适的经验原子间势对于准确描述原子间相互作用以及模拟石墨烯的摩擦和磨损至关重要。在分子动力学模拟中采用了四种经验势--Tersoff、REBO、AIREBO 和 LCBOP--来研究石墨烯在原子尺度上的磨损过程。研究发现,石墨烯的摩擦过程可分为三个不同的阶段:弹性变形、塑性变形和磨损。利用逐步增加载荷的方法,确定了石墨烯在四种不同经验电位下每个阶段的临界载荷。此外,还详细分析了斯通-威尔士(SW)缺陷的形成、键的分布、键的断裂和愈合以及皱纹的形成。最后,就摩擦系数和磨损形态与之前的实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Interatomic Potentials on Atomic-Scale Wear of Graphene: A Molecular Dynamics Study
Selecting an appropriate empirical interatomic potential is essential for accurately describing interatomic interactions and simulating the friction and wear of graphene. Four empirical potentials—Tersoff, REBO, AIREBO, and LCBOP—were employed in molecular dynamics simulations to study the wear process of graphene at the atomic scale. The frictional process of graphene was found to be divisible into three distinct phases: elastic deformation, plastic deformation, and wear. Using a progressively increasing load method, the critical load for each phase of graphene under four different empirical potentials was identified. Furthermore, the formation of Stone–Wales (SW) defects, bond distribution, bond breaking and healing, and wrinkle formation were analyzed in detail. Finally, a comparison was made with previous experimental results regarding friction coefficient and wear morphology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信