Rosa Maria Nothnagel, G. Boidi, Rainer Franz, M. Frauscher
{"title":"评估生物基摩擦改进剂在食品级润滑方面的潜力","authors":"Rosa Maria Nothnagel, G. Boidi, Rainer Franz, M. Frauscher","doi":"10.3390/lubricants12070247","DOIUrl":null,"url":null,"abstract":"The objective of this research is to identify a bio-based friction modifier (FM) with tribological performance comparable to conventional FMs. Promising alternatives to conventional FMs, such as the FMs derived from natural sources, including rapeseed and salmon oil, were selected. Increasing concerns about crude oil prices, environmental impact, and the depletion of fossil resources have further fueled the search for renewable, biodegradable, and environmentally friendly raw materials for lubricants Tribological tests were conducted using a rheometer under non-conformal contact. The normal force, temperature, and sliding speed were varied to simulate conditions such as those found in a food extruder. To simulate cold extrusion applications, water and bio-based FM mixtures were used. The best-performing bio-based FMs were then mixed with a polyalphaolefin to simulate warm extrusion conditions. The results were compared to those obtained from mixtures of a polyalphaolefin and selected conventional FMs. The main finding of this study demonstrated that rapeseed and salmon oils, with a peak coefficient of friction (COF) of 0.16, are the best-performing bio-based FMs for reducing friction. When mixed with distilled water for cold extrusion (case 1) and with polyalphaolefin for warm extrusion (case 2), they performed similarly to the conventional FM, tallow amine, also with a maximum COF of 0.16, and significantly better than polyalphaolefin alone (maximum COF of 0.25). Consequently, rapeseed and salmon oils are suitable bio-based FM candidates to replace conventional FMs in food-grade lubrication.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Potential of Bio-Based Friction Modifiers for Food-Grade Lubrication\",\"authors\":\"Rosa Maria Nothnagel, G. Boidi, Rainer Franz, M. Frauscher\",\"doi\":\"10.3390/lubricants12070247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to identify a bio-based friction modifier (FM) with tribological performance comparable to conventional FMs. Promising alternatives to conventional FMs, such as the FMs derived from natural sources, including rapeseed and salmon oil, were selected. Increasing concerns about crude oil prices, environmental impact, and the depletion of fossil resources have further fueled the search for renewable, biodegradable, and environmentally friendly raw materials for lubricants Tribological tests were conducted using a rheometer under non-conformal contact. The normal force, temperature, and sliding speed were varied to simulate conditions such as those found in a food extruder. To simulate cold extrusion applications, water and bio-based FM mixtures were used. The best-performing bio-based FMs were then mixed with a polyalphaolefin to simulate warm extrusion conditions. The results were compared to those obtained from mixtures of a polyalphaolefin and selected conventional FMs. The main finding of this study demonstrated that rapeseed and salmon oils, with a peak coefficient of friction (COF) of 0.16, are the best-performing bio-based FMs for reducing friction. When mixed with distilled water for cold extrusion (case 1) and with polyalphaolefin for warm extrusion (case 2), they performed similarly to the conventional FM, tallow amine, also with a maximum COF of 0.16, and significantly better than polyalphaolefin alone (maximum COF of 0.25). Consequently, rapeseed and salmon oils are suitable bio-based FM candidates to replace conventional FMs in food-grade lubrication.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12070247\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12070247","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
这项研究的目的是找出一种摩擦学性能可与传统摩擦改进剂媲美的生物基摩擦改进剂(FM)。研究人员选择了传统摩擦改进剂的前景看好的替代品,如从油菜籽和鲑鱼油等天然来源提取的摩擦改进剂。人们对原油价格、环境影响和化石资源枯竭的担忧与日俱增,这进一步推动了对可再生、可生物降解和环保型润滑油原材料的探索。 在非形式接触条件下,使用流变仪进行了摩擦学测试。通过改变法向力、温度和滑动速度来模拟食品挤压机中的条件。为了模拟冷挤压应用,使用了水和生物基 FM 混合物。然后将性能最好的生物基 FM 与聚α烯烃混合,模拟热挤压条件。研究结果与聚α烯烃和选定的传统 FM 混合物的结果进行了比较。这项研究的主要结果表明,菜籽油和鲑鱼油的峰值摩擦系数(COF)为 0.16,是降低摩擦性能最好的生物基调频材料。当与蒸馏水混合用于冷挤压(情况 1)和与聚α烯烃混合用于热挤压(情况 2)时,它们的性能与传统的摩擦材料牛脂胺相似,最大 COF 也是 0.16,明显优于单独使用聚α烯烃(最大 COF 为 0.25)。因此,菜籽油和鲑鱼油是替代食品级润滑油中传统调质材料的合适生物基调质材料。
Assessing the Potential of Bio-Based Friction Modifiers for Food-Grade Lubrication
The objective of this research is to identify a bio-based friction modifier (FM) with tribological performance comparable to conventional FMs. Promising alternatives to conventional FMs, such as the FMs derived from natural sources, including rapeseed and salmon oil, were selected. Increasing concerns about crude oil prices, environmental impact, and the depletion of fossil resources have further fueled the search for renewable, biodegradable, and environmentally friendly raw materials for lubricants Tribological tests were conducted using a rheometer under non-conformal contact. The normal force, temperature, and sliding speed were varied to simulate conditions such as those found in a food extruder. To simulate cold extrusion applications, water and bio-based FM mixtures were used. The best-performing bio-based FMs were then mixed with a polyalphaolefin to simulate warm extrusion conditions. The results were compared to those obtained from mixtures of a polyalphaolefin and selected conventional FMs. The main finding of this study demonstrated that rapeseed and salmon oils, with a peak coefficient of friction (COF) of 0.16, are the best-performing bio-based FMs for reducing friction. When mixed with distilled water for cold extrusion (case 1) and with polyalphaolefin for warm extrusion (case 2), they performed similarly to the conventional FM, tallow amine, also with a maximum COF of 0.16, and significantly better than polyalphaolefin alone (maximum COF of 0.25). Consequently, rapeseed and salmon oils are suitable bio-based FM candidates to replace conventional FMs in food-grade lubrication.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding