Saleh Baghersalimi, A. Amirshahi, Farnaz Forooghifar, T. Teijeiro, A. Aminifar, David Atienza
{"title":"M2SKD:针对低功耗可穿戴系统的癫痫发作实时检测的多对单知识提炼","authors":"Saleh Baghersalimi, A. Amirshahi, Farnaz Forooghifar, T. Teijeiro, A. Aminifar, David Atienza","doi":"10.1145/3675402","DOIUrl":null,"url":null,"abstract":"Integrating low-power wearable systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). However, there is a trade-off between the algorithms’ performance and the low-power requirements of platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use wearable devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose the M2SKD (Multi-to-Single Knowledge Distillation) approach targeting single-biosignal processing in wearable systems. The starting point is to train a highly-accurate multi-biosignal DNN, then apply M2SKD to develop a single-biosignal DNN solution for wearable systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several edge computing platforms.","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2SKD: Multi-to-Single Knowledge Distillation of Real-Time Epileptic Seizure Detection for Low-Power Wearable Systems\",\"authors\":\"Saleh Baghersalimi, A. Amirshahi, Farnaz Forooghifar, T. Teijeiro, A. Aminifar, David Atienza\",\"doi\":\"10.1145/3675402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating low-power wearable systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). However, there is a trade-off between the algorithms’ performance and the low-power requirements of platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use wearable devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose the M2SKD (Multi-to-Single Knowledge Distillation) approach targeting single-biosignal processing in wearable systems. The starting point is to train a highly-accurate multi-biosignal DNN, then apply M2SKD to develop a single-biosignal DNN solution for wearable systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several edge computing platforms.\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3675402\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3675402","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
M2SKD: Multi-to-Single Knowledge Distillation of Real-Time Epileptic Seizure Detection for Low-Power Wearable Systems
Integrating low-power wearable systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). However, there is a trade-off between the algorithms’ performance and the low-power requirements of platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use wearable devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose the M2SKD (Multi-to-Single Knowledge Distillation) approach targeting single-biosignal processing in wearable systems. The starting point is to train a highly-accurate multi-biosignal DNN, then apply M2SKD to develop a single-biosignal DNN solution for wearable systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several edge computing platforms.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.