用拉普拉斯残差幂级数法求解(11)和(21)维时间分数非线性微分方程++

Adel R. Hadhoud, Abdulqawi A. M. Rageh, T. Radwan
{"title":"用拉普拉斯残差幂级数法求解(11)和(21)维时间分数非线性微分方程++","authors":"Adel R. Hadhoud, Abdulqawi A. M. Rageh, T. Radwan","doi":"10.3390/fractalfract8070401","DOIUrl":null,"url":null,"abstract":"In this paper, we present a highly efficient analytical method that combines the Laplace transform and the residual power series approach to approximate solutions of nonlinear time-fractional partial differential equations (PDEs). First, we derive the analytical method for a general form of fractional partial differential equations. Then, we apply the proposed method to find approximate solutions to the time-fractional coupled Berger equations, the time-fractional coupled Korteweg–de Vries equations and time-fractional Whitham–Broer–Kaup equations. Secondly, we extend the proposed method to solve the two-dimensional time-fractional coupled Navier–Stokes equations. The proposed method is validated through various test problems, measuring quality and efficiency using error norms E2 and E∞, and compared to existing methods.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing the Laplace Residual Power Series Method to Solve (11)- and (21)-Dimensional Time-Fractional Nonlinear Differential Equations++\",\"authors\":\"Adel R. Hadhoud, Abdulqawi A. M. Rageh, T. Radwan\",\"doi\":\"10.3390/fractalfract8070401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a highly efficient analytical method that combines the Laplace transform and the residual power series approach to approximate solutions of nonlinear time-fractional partial differential equations (PDEs). First, we derive the analytical method for a general form of fractional partial differential equations. Then, we apply the proposed method to find approximate solutions to the time-fractional coupled Berger equations, the time-fractional coupled Korteweg–de Vries equations and time-fractional Whitham–Broer–Kaup equations. Secondly, we extend the proposed method to solve the two-dimensional time-fractional coupled Navier–Stokes equations. The proposed method is validated through various test problems, measuring quality and efficiency using error norms E2 and E∞, and compared to existing methods.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8070401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种结合拉普拉斯变换和残差幂级数方法的高效分析方法,用于近似求解非线性时分数偏微分方程(PDEs)。首先,我们推导出分数偏微分方程一般形式的分析方法。然后,我们应用所提出的方法找到时分数耦合 Berger 方程、时分数耦合 Korteweg-de Vries 方程和时分数 Whitham-Broer-Kaup 方程的近似解。其次,我们将提出的方法扩展到二维时分数耦合纳维-斯托克斯方程的求解。我们通过各种测试问题验证了所提出的方法,使用误差规范 E2 和 E∞ 衡量质量和效率,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing the Laplace Residual Power Series Method to Solve (11)- and (21)-Dimensional Time-Fractional Nonlinear Differential Equations++
In this paper, we present a highly efficient analytical method that combines the Laplace transform and the residual power series approach to approximate solutions of nonlinear time-fractional partial differential equations (PDEs). First, we derive the analytical method for a general form of fractional partial differential equations. Then, we apply the proposed method to find approximate solutions to the time-fractional coupled Berger equations, the time-fractional coupled Korteweg–de Vries equations and time-fractional Whitham–Broer–Kaup equations. Secondly, we extend the proposed method to solve the two-dimensional time-fractional coupled Navier–Stokes equations. The proposed method is validated through various test problems, measuring quality and efficiency using error norms E2 and E∞, and compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信