尼泊尔喜马拉雅山西部晚新生代构造演化:低温热年代学的启示

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Jonathan E. Harvey, D. Burbank
{"title":"尼泊尔喜马拉雅山西部晚新生代构造演化:低温热年代学的启示","authors":"Jonathan E. Harvey, D. Burbank","doi":"10.2113/2023/lithosphere_2023_265","DOIUrl":null,"url":null,"abstract":"\n In the central Himalaya, an abrupt physiographic transition at the foot of the Greater Himalaya (PT2) marks the southern edge of a zone of rapid rock uplift along a ramp in the Main Himalayan Thrust (MHT). Despite being traceable along ~1500 km of the central Himalaya, PT2 is less distinct in western Nepal, reflecting along-strike changes in MHT geometry and/or a migrating locus of midcrustal deformation, the details of which have important implications for seismic hazard in western Nepal. New mineral cooling ages (apatite and zircon U-Th/He and muscovite Ar-Ar) from a series of relief transects provide constraints on exhumation rates and histories in western Nepal. Inversion of these data using Pecube and QTQt models yields results that require rapid (~1.4–2.7 mm/yr) exhumation in the rocks near the along-strike projection of PT2 until around 9–11 Ma, followed by much slower (~0.1–0.4 mm/yr) exhumation until at least the late Pliocene. In contrast, transects from ~75 km hinterlandward are best fit by rapid exhumation rates (~1.5–2.1 mm/yr) over at least the past ~4 Myr. Midcrustal deformation in western Nepal is occurring well north of the position expected from along-strike structures in central Nepal, and a growing dataset suggests that rapid exhumation has been sustained there since the late Miocene. These new constraints on the late Cenozoic exhumation history of the western Nepal Himalaya provide key insight on the active structures behind the complex seismic hazards in the region.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Cenozoic Tectonic Evolution of the Western Nepal Himalaya: Insights from Low-Temperature Thermochronology\",\"authors\":\"Jonathan E. Harvey, D. Burbank\",\"doi\":\"10.2113/2023/lithosphere_2023_265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the central Himalaya, an abrupt physiographic transition at the foot of the Greater Himalaya (PT2) marks the southern edge of a zone of rapid rock uplift along a ramp in the Main Himalayan Thrust (MHT). Despite being traceable along ~1500 km of the central Himalaya, PT2 is less distinct in western Nepal, reflecting along-strike changes in MHT geometry and/or a migrating locus of midcrustal deformation, the details of which have important implications for seismic hazard in western Nepal. New mineral cooling ages (apatite and zircon U-Th/He and muscovite Ar-Ar) from a series of relief transects provide constraints on exhumation rates and histories in western Nepal. Inversion of these data using Pecube and QTQt models yields results that require rapid (~1.4–2.7 mm/yr) exhumation in the rocks near the along-strike projection of PT2 until around 9–11 Ma, followed by much slower (~0.1–0.4 mm/yr) exhumation until at least the late Pliocene. In contrast, transects from ~75 km hinterlandward are best fit by rapid exhumation rates (~1.5–2.1 mm/yr) over at least the past ~4 Myr. Midcrustal deformation in western Nepal is occurring well north of the position expected from along-strike structures in central Nepal, and a growing dataset suggests that rapid exhumation has been sustained there since the late Miocene. These new constraints on the late Cenozoic exhumation history of the western Nepal Himalaya provide key insight on the active structures behind the complex seismic hazards in the region.\",\"PeriodicalId\":18147,\"journal\":{\"name\":\"Lithosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2023/lithosphere_2023_265\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2023/lithosphere_2023_265","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在喜马拉雅山中部,大喜马拉雅山脚下的一个突变地貌(PT2)标志着沿喜马拉雅山主脉(MHT)斜坡快速岩石隆起区的南缘。尽管在喜马拉雅山脉中部约 1500 千米的范围内可以追踪到 PT2,但在尼泊尔西部却不那么明显,这反映了喜马拉雅山脉主脉几何形状的沿线变化和/或地壳中段变形的迁移位置,其细节对尼泊尔西部的地震危险具有重要影响。来自一系列地貌横断面的新矿物冷却年龄(磷灰石和锆石 U-Th/He 以及麝香石 Ar-Ar)为尼泊尔西部的掘起速率和历史提供了制约因素。利用Pecube和QTQt模型对这些数据进行反演得出的结果表明,PT2沿走向投影附近的岩石在大约9-11Ma之前的隆升速度很快(大约1.4-2.7毫米/年),之后的隆升速度要慢得多(大约0.1-0.4毫米/年),至少要到上新世晚期。与此相反,至少在过去约4Myr的时间里,从约75km向内陆的横断面与快速隆升速率(约1.5-2.1 mm/yr)最为吻合。尼泊尔西部的中地壳变形发生在尼泊尔中部沿走向构造所预期的位置以北,而且越来越多的数据集表明,自中新世晚期以来,那里一直保持着快速的隆升。这些关于尼泊尔喜马拉雅山脉西部晚新生代掘起历史的新制约因素,为了解该地区复杂地震灾害背后的活动构造提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Late Cenozoic Tectonic Evolution of the Western Nepal Himalaya: Insights from Low-Temperature Thermochronology
In the central Himalaya, an abrupt physiographic transition at the foot of the Greater Himalaya (PT2) marks the southern edge of a zone of rapid rock uplift along a ramp in the Main Himalayan Thrust (MHT). Despite being traceable along ~1500 km of the central Himalaya, PT2 is less distinct in western Nepal, reflecting along-strike changes in MHT geometry and/or a migrating locus of midcrustal deformation, the details of which have important implications for seismic hazard in western Nepal. New mineral cooling ages (apatite and zircon U-Th/He and muscovite Ar-Ar) from a series of relief transects provide constraints on exhumation rates and histories in western Nepal. Inversion of these data using Pecube and QTQt models yields results that require rapid (~1.4–2.7 mm/yr) exhumation in the rocks near the along-strike projection of PT2 until around 9–11 Ma, followed by much slower (~0.1–0.4 mm/yr) exhumation until at least the late Pliocene. In contrast, transects from ~75 km hinterlandward are best fit by rapid exhumation rates (~1.5–2.1 mm/yr) over at least the past ~4 Myr. Midcrustal deformation in western Nepal is occurring well north of the position expected from along-strike structures in central Nepal, and a growing dataset suggests that rapid exhumation has been sustained there since the late Miocene. These new constraints on the late Cenozoic exhumation history of the western Nepal Himalaya provide key insight on the active structures behind the complex seismic hazards in the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lithosphere
Lithosphere GEOCHEMISTRY & GEOPHYSICS-GEOLOGY
CiteScore
3.80
自引率
16.70%
发文量
284
审稿时长
>12 weeks
期刊介绍: The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信