D. Banov, Guiyun Song, Zahraa Foraida, Oksana Tkachova, Oleksandr Zdoryk, Maria Carvalho
{"title":"对具有组织保护和微生物支持特性的粉末水凝胶成膜聚合物复合基料进行体内外综合评估","authors":"D. Banov, Guiyun Song, Zahraa Foraida, Oksana Tkachova, Oleksandr Zdoryk, Maria Carvalho","doi":"10.3390/gels10070447","DOIUrl":null,"url":null,"abstract":"The study aimed to perform a comprehensive in vitro and in vivo evaluation of a newly developed, patent-pending, powder-to-hydrogel, film-forming polymer complex base, which possesses tissue-protective and microbiome-supportive properties, and to compare its characteristics with poloxamer 407. The study used a combination of in vitro assays, including tissue viability and cell migration, and in vivo wound healing evaluations in male diabetic mice. Microbiome dynamics at wound sites were also analyzed. The in vitro assays demonstrated that the polymer complex base was non-cytotoxic and that it enhanced cell migration over poloxamer 407. In vivo, the polymer complex base demonstrated superior wound healing capabilities, particularly in combination with misoprostol and phenytoin, as evidenced by the reduced wound area and inflammation scores. Microbiome analysis revealed favorable shifts in bacterial populations associated with the polymer complex base-treated wounds. The polymer complex base demonstrates clinical significance in wound care, potentially offering improved healing, safety and microbiome support. Its transformative properties and efficacy in drug delivery make it a promising candidate for advanced wound care applications, particularly in chronic wound management.","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties\",\"authors\":\"D. Banov, Guiyun Song, Zahraa Foraida, Oksana Tkachova, Oleksandr Zdoryk, Maria Carvalho\",\"doi\":\"10.3390/gels10070447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aimed to perform a comprehensive in vitro and in vivo evaluation of a newly developed, patent-pending, powder-to-hydrogel, film-forming polymer complex base, which possesses tissue-protective and microbiome-supportive properties, and to compare its characteristics with poloxamer 407. The study used a combination of in vitro assays, including tissue viability and cell migration, and in vivo wound healing evaluations in male diabetic mice. Microbiome dynamics at wound sites were also analyzed. The in vitro assays demonstrated that the polymer complex base was non-cytotoxic and that it enhanced cell migration over poloxamer 407. In vivo, the polymer complex base demonstrated superior wound healing capabilities, particularly in combination with misoprostol and phenytoin, as evidenced by the reduced wound area and inflammation scores. Microbiome analysis revealed favorable shifts in bacterial populations associated with the polymer complex base-treated wounds. The polymer complex base demonstrates clinical significance in wound care, potentially offering improved healing, safety and microbiome support. Its transformative properties and efficacy in drug delivery make it a promising candidate for advanced wound care applications, particularly in chronic wound management.\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10070447\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10070447","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties
The study aimed to perform a comprehensive in vitro and in vivo evaluation of a newly developed, patent-pending, powder-to-hydrogel, film-forming polymer complex base, which possesses tissue-protective and microbiome-supportive properties, and to compare its characteristics with poloxamer 407. The study used a combination of in vitro assays, including tissue viability and cell migration, and in vivo wound healing evaluations in male diabetic mice. Microbiome dynamics at wound sites were also analyzed. The in vitro assays demonstrated that the polymer complex base was non-cytotoxic and that it enhanced cell migration over poloxamer 407. In vivo, the polymer complex base demonstrated superior wound healing capabilities, particularly in combination with misoprostol and phenytoin, as evidenced by the reduced wound area and inflammation scores. Microbiome analysis revealed favorable shifts in bacterial populations associated with the polymer complex base-treated wounds. The polymer complex base demonstrates clinical significance in wound care, potentially offering improved healing, safety and microbiome support. Its transformative properties and efficacy in drug delivery make it a promising candidate for advanced wound care applications, particularly in chronic wound management.