J. C. Fernández-Caliani, Juan Aurelio Pérez-Macías
{"title":"追踪西班牙西南部蒙特罗梅罗考古遗址中前罗马时期炉渣造成的土壤污染","authors":"J. C. Fernández-Caliani, Juan Aurelio Pérez-Macías","doi":"10.3390/soilsystems8030078","DOIUrl":null,"url":null,"abstract":"Soil serves as a repository of human history, preserving artifacts within its horizons. However, the presence of chemically reactive remnants, such as ancient slags, can significantly impact the surrounding soil environment. This paper addresses this scarcely explored issue by focusing on soil contamination arising from pre-Roman slag deposits at the Monte Romero archaeological site in southwest Spain, dating back to the Tartessian period (c. 7th century BC). Through the high-resolution microscopy examination of slag wastes and the trace element analysis of soil samples by ICP-OES, this study evaluated current contamination status using a multi-index approach. The results revealed markedly high levels of Pb (>5000 mg kg−1), Cu (up to 2730 mg kg−1), and As (up to 445 mg kg−1) in the soil compared to a control sample. The identification of secondary complex compounds like Cu arsenates and Pb arsenates/antimonates within slag cavities suggests post-depositional weathering processes, leading to the dispersion of potentially toxic elements into the surrounding soil. Assessments through indices of contamination and potential ecological risk highlighted severe contamination, particularly concerning Ag, Pb, Sb, Cu, and As. This study underscores the importance of addressing potential environmental hazards associated with archaeological sites hosting remnants of metal production.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 440","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain\",\"authors\":\"J. C. Fernández-Caliani, Juan Aurelio Pérez-Macías\",\"doi\":\"10.3390/soilsystems8030078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil serves as a repository of human history, preserving artifacts within its horizons. However, the presence of chemically reactive remnants, such as ancient slags, can significantly impact the surrounding soil environment. This paper addresses this scarcely explored issue by focusing on soil contamination arising from pre-Roman slag deposits at the Monte Romero archaeological site in southwest Spain, dating back to the Tartessian period (c. 7th century BC). Through the high-resolution microscopy examination of slag wastes and the trace element analysis of soil samples by ICP-OES, this study evaluated current contamination status using a multi-index approach. The results revealed markedly high levels of Pb (>5000 mg kg−1), Cu (up to 2730 mg kg−1), and As (up to 445 mg kg−1) in the soil compared to a control sample. The identification of secondary complex compounds like Cu arsenates and Pb arsenates/antimonates within slag cavities suggests post-depositional weathering processes, leading to the dispersion of potentially toxic elements into the surrounding soil. Assessments through indices of contamination and potential ecological risk highlighted severe contamination, particularly concerning Ag, Pb, Sb, Cu, and As. This study underscores the importance of addressing potential environmental hazards associated with archaeological sites hosting remnants of metal production.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 440\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/soilsystems8030078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems8030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain
Soil serves as a repository of human history, preserving artifacts within its horizons. However, the presence of chemically reactive remnants, such as ancient slags, can significantly impact the surrounding soil environment. This paper addresses this scarcely explored issue by focusing on soil contamination arising from pre-Roman slag deposits at the Monte Romero archaeological site in southwest Spain, dating back to the Tartessian period (c. 7th century BC). Through the high-resolution microscopy examination of slag wastes and the trace element analysis of soil samples by ICP-OES, this study evaluated current contamination status using a multi-index approach. The results revealed markedly high levels of Pb (>5000 mg kg−1), Cu (up to 2730 mg kg−1), and As (up to 445 mg kg−1) in the soil compared to a control sample. The identification of secondary complex compounds like Cu arsenates and Pb arsenates/antimonates within slag cavities suggests post-depositional weathering processes, leading to the dispersion of potentially toxic elements into the surrounding soil. Assessments through indices of contamination and potential ecological risk highlighted severe contamination, particularly concerning Ag, Pb, Sb, Cu, and As. This study underscores the importance of addressing potential environmental hazards associated with archaeological sites hosting remnants of metal production.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.