评估根瘤菌和微藻产生的根接触、扩散和挥发性化合物对拟南芥的植物生长促进作用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hédi Erdélyi, Ádám Czobor, Péter Szijjártó, Viktória Bódai, Balázs Erdélyi, Zsuzsanna Nagymáté
{"title":"评估根瘤菌和微藻产生的根接触、扩散和挥发性化合物对拟南芥的植物生长促进作用","authors":"Hédi Erdélyi, Ádám Czobor, Péter Szijjártó, Viktória Bódai, Balázs Erdélyi, Zsuzsanna Nagymáté","doi":"10.3311/ppch.24029","DOIUrl":null,"url":null,"abstract":"Bacteria and microalgae have beneficial impact on plant growth and survival through host functional and adaptive traits via complex mechanisms. Volatile and non-volatile metabolites produced by microorganisms have a continuous effect on plants by providing nutrients and regulating various plant metabolic and signaling pathways. The aim of this study was to assess the plant promoting effect of two Chlorella spp. microalgae under mixotrophic conditions, as well as the effects of plant growth promoting rhizobacteria (PGPR) Bacillus sp. WCC-B36, Azospirillum sp. WCC-ASP12 and Azotobacter sp. WCC-IZA56 on the model plant Arabidopsis thaliana. Growth and quality parameters were followed in three different co-cultivation systems as (i) direct root contact supplemented with density effect, (ii) contact with diffusible compounds and (iii) effects of volatile compounds. Direct effect mediated by rhizobacteria promoted significant shoot and root length growth with well-developed root architecture at low bacterial densities (<105 CFU – colony forming unit mL−1), which became more pronounced over time. At a higher microbial density (>107 CFU mL−1), plant growth was retarded regardless of the bacteria present. This suggests that the microenvironment surrounding the colonies was altered and there was competition for nutrients. Our results indicate that the metabolites, diffusible and volatile organic substances produced by the microalgae enhanced lateral root growth and root hair formation, while inhibited primary root elongation. Volatile and diffusible substances of Chlorella sp. CHL13 and Bacillus sp. WCC-B36 have the most significant effect on seedlings and primary root growth.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Plant Growth Promoting Effect of Root Contact, Diffusible and Volatile Compounds Produced by Rhizobacteria and Microalgae on Arabidopsis Thaliana\",\"authors\":\"Hédi Erdélyi, Ádám Czobor, Péter Szijjártó, Viktória Bódai, Balázs Erdélyi, Zsuzsanna Nagymáté\",\"doi\":\"10.3311/ppch.24029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteria and microalgae have beneficial impact on plant growth and survival through host functional and adaptive traits via complex mechanisms. Volatile and non-volatile metabolites produced by microorganisms have a continuous effect on plants by providing nutrients and regulating various plant metabolic and signaling pathways. The aim of this study was to assess the plant promoting effect of two Chlorella spp. microalgae under mixotrophic conditions, as well as the effects of plant growth promoting rhizobacteria (PGPR) Bacillus sp. WCC-B36, Azospirillum sp. WCC-ASP12 and Azotobacter sp. WCC-IZA56 on the model plant Arabidopsis thaliana. Growth and quality parameters were followed in three different co-cultivation systems as (i) direct root contact supplemented with density effect, (ii) contact with diffusible compounds and (iii) effects of volatile compounds. Direct effect mediated by rhizobacteria promoted significant shoot and root length growth with well-developed root architecture at low bacterial densities (<105 CFU – colony forming unit mL−1), which became more pronounced over time. At a higher microbial density (>107 CFU mL−1), plant growth was retarded regardless of the bacteria present. This suggests that the microenvironment surrounding the colonies was altered and there was competition for nutrients. Our results indicate that the metabolites, diffusible and volatile organic substances produced by the microalgae enhanced lateral root growth and root hair formation, while inhibited primary root elongation. Volatile and diffusible substances of Chlorella sp. CHL13 and Bacillus sp. WCC-B36 have the most significant effect on seedlings and primary root growth.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.24029\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.24029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细菌和微藻通过复杂的机制,通过宿主的功能和适应特性对植物的生长和存活产生有益的影响。微生物产生的挥发性和非挥发性代谢物通过提供养分和调节植物的各种代谢和信号途径对植物产生持续影响。本研究的目的是评估两种小球藻属微藻类在混养条件下对植物的促进作用,以及植物生长促进根瘤菌(PGPR)芽孢杆菌 WCC-B36、Azospirillum sp.WCC-ASP12和Azotobacter sp.WCC-IZA56对模式植物拟南芥的影响。在三种不同的共培养系统中,对生长和质量参数进行了跟踪:(i) 直接根接触并辅以密度效应;(ii) 与扩散性化合物接触;(iii) 挥发性化合物的影响。在细菌密度较低(107 CFU mL-1)的情况下,根瘤菌介导的直接效应可促进嫩枝和根长的显著增长,并具有发达的根系结构。这表明菌落周围的微环境发生了变化,存在着养分竞争。我们的研究结果表明,微藻产生的代谢物、可扩散物质和挥发性有机物质促进了侧根的生长和根毛的形成,同时抑制了主根的伸长。小球藻 CHL13 和芽孢杆菌 WCC-B36 的挥发性和扩散性物质对幼苗和主根生长的影响最为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Plant Growth Promoting Effect of Root Contact, Diffusible and Volatile Compounds Produced by Rhizobacteria and Microalgae on Arabidopsis Thaliana
Bacteria and microalgae have beneficial impact on plant growth and survival through host functional and adaptive traits via complex mechanisms. Volatile and non-volatile metabolites produced by microorganisms have a continuous effect on plants by providing nutrients and regulating various plant metabolic and signaling pathways. The aim of this study was to assess the plant promoting effect of two Chlorella spp. microalgae under mixotrophic conditions, as well as the effects of plant growth promoting rhizobacteria (PGPR) Bacillus sp. WCC-B36, Azospirillum sp. WCC-ASP12 and Azotobacter sp. WCC-IZA56 on the model plant Arabidopsis thaliana. Growth and quality parameters were followed in three different co-cultivation systems as (i) direct root contact supplemented with density effect, (ii) contact with diffusible compounds and (iii) effects of volatile compounds. Direct effect mediated by rhizobacteria promoted significant shoot and root length growth with well-developed root architecture at low bacterial densities (<105 CFU – colony forming unit mL−1), which became more pronounced over time. At a higher microbial density (>107 CFU mL−1), plant growth was retarded regardless of the bacteria present. This suggests that the microenvironment surrounding the colonies was altered and there was competition for nutrients. Our results indicate that the metabolites, diffusible and volatile organic substances produced by the microalgae enhanced lateral root growth and root hair formation, while inhibited primary root elongation. Volatile and diffusible substances of Chlorella sp. CHL13 and Bacillus sp. WCC-B36 have the most significant effect on seedlings and primary root growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信