解决三时刻奇异扰动系统中过渡过程优化问题的渐近方法

A. I. Kalinin, L. I. Lavrinovich
{"title":"解决三时刻奇异扰动系统中过渡过程优化问题的渐近方法","authors":"A. I. Kalinin, L. I. Lavrinovich","doi":"10.29235/1561-8323-2024-68-3-183-187","DOIUrl":null,"url":null,"abstract":"The problem of constructing a transition process with minimal energy costs for a linear singularly perturbed system containing three groups of variables with significantly different rates of change is considered. Asymptotic approximations to solving this problem are constructed in the form of an open-loop and feedback controls. The main advantage of the proposed computational procedures is that the original problem is split into three unperturbed optimal control problems of lower dimension.","PeriodicalId":11283,"journal":{"name":"Doklady of the National Academy of Sciences of Belarus","volume":"117 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic method for solving the problem of transition process optimization in a three-tempo singularly perturbed system\",\"authors\":\"A. I. Kalinin, L. I. Lavrinovich\",\"doi\":\"10.29235/1561-8323-2024-68-3-183-187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of constructing a transition process with minimal energy costs for a linear singularly perturbed system containing three groups of variables with significantly different rates of change is considered. Asymptotic approximations to solving this problem are constructed in the form of an open-loop and feedback controls. The main advantage of the proposed computational procedures is that the original problem is split into three unperturbed optimal control problems of lower dimension.\",\"PeriodicalId\":11283,\"journal\":{\"name\":\"Doklady of the National Academy of Sciences of Belarus\",\"volume\":\"117 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady of the National Academy of Sciences of Belarus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2024-68-3-183-187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady of the National Academy of Sciences of Belarus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2024-68-3-183-187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个包含三组变化率明显不同的变量的线性奇异扰动系统来说,如何构建一个能量成本最小的过渡过程是一个需要考虑的问题。以开环和反馈控制的形式构建了解决这一问题的渐近近似值。提出的计算程序的主要优势在于,原始问题被拆分为三个维度较低的未扰动最优控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic method for solving the problem of transition process optimization in a three-tempo singularly perturbed system
The problem of constructing a transition process with minimal energy costs for a linear singularly perturbed system containing three groups of variables with significantly different rates of change is considered. Asymptotic approximations to solving this problem are constructed in the form of an open-loop and feedback controls. The main advantage of the proposed computational procedures is that the original problem is split into three unperturbed optimal control problems of lower dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信