用于电动伸展运动的灵活、结构化软机器人致动器

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Taekyoung Kim, Pranav Kaarthik, Ryan L. Truby
{"title":"用于电动伸展运动的灵活、结构化软机器人致动器","authors":"Taekyoung Kim,&nbsp;Pranav Kaarthik,&nbsp;Ryan L. Truby","doi":"10.1002/aisy.202300866","DOIUrl":null,"url":null,"abstract":"<p>To advance the design space of electrically-driven soft actuators, a flexible, architected soft robotic actuator is presented for motor-driven extensional motion. The actuator comprises a 3D printed, cylindrical handed shearing auxetic (HSA) structure and a deformable, internal rubber bellows shaft. The actuator linearly extends upon applying torque from a servo motor; the rubber bellows shaft is stretchable but resistant to torsional deflection, allowing it to transmit torque from the servo motor to the other end of the HSA. The high flexibility of the HSA and rubber bellows shaft enable the actuator to adaptively extend even when bent. The actuator's two components and its performance are mechanically characterized. Actuation strains of 45% elongation and a maximum blocked pushing force of about 8 N are demonstrated. The actuator's capabilities are showcased in two separate demonstrations: a crawling robot and a sensorized artificial muscle that integrates a microfluidic, liquid metal strain sensor. The architected material design approach for a robust, motor-driven soft actuator provides several unique features—including a compact form factor and ease of use—over other motorized soft robotic actuators based on HSA assemblies or cable tendon mechanisms.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300866","citationCount":"0","resultStr":"{\"title\":\"A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion\",\"authors\":\"Taekyoung Kim,&nbsp;Pranav Kaarthik,&nbsp;Ryan L. Truby\",\"doi\":\"10.1002/aisy.202300866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To advance the design space of electrically-driven soft actuators, a flexible, architected soft robotic actuator is presented for motor-driven extensional motion. The actuator comprises a 3D printed, cylindrical handed shearing auxetic (HSA) structure and a deformable, internal rubber bellows shaft. The actuator linearly extends upon applying torque from a servo motor; the rubber bellows shaft is stretchable but resistant to torsional deflection, allowing it to transmit torque from the servo motor to the other end of the HSA. The high flexibility of the HSA and rubber bellows shaft enable the actuator to adaptively extend even when bent. The actuator's two components and its performance are mechanically characterized. Actuation strains of 45% elongation and a maximum blocked pushing force of about 8 N are demonstrated. The actuator's capabilities are showcased in two separate demonstrations: a crawling robot and a sensorized artificial muscle that integrates a microfluidic, liquid metal strain sensor. The architected material design approach for a robust, motor-driven soft actuator provides several unique features—including a compact form factor and ease of use—over other motorized soft robotic actuators based on HSA assemblies or cable tendon mechanisms.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300866\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了拓展电驱动软致动器的设计空间,本文介绍了一种用于电机驱动伸展运动的灵活、结构化软机器人致动器。该致动器包括一个 3D 打印的圆柱形手动剪切辅助(HSA)结构和一个可变形的内部橡胶波纹管轴。当伺服电机施加扭矩时,致动器可线性伸展;橡胶波纹管轴可伸展,但不易扭转变形,使其能够将伺服电机的扭矩传递到 HSA 的另一端。HSA 和橡胶波纹管轴的高弹性使推杆即使在弯曲时也能自适应伸展。推杆的两个组件及其性能均具有机械特性。结果表明,致动器的伸长应变为 45%,最大阻挡推力约为 8 N。致动器的功能在两个独立的演示中得到了展示:爬行机器人和集成了微流体液态金属应变传感器的传感人造肌肉。与其他基于 HSA 组件或缆索腱机制的电动软机器人致动器相比,用于坚固耐用的电机驱动软致动器的结构化材料设计方法具有多个独特功能,包括外形紧凑和易于使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion

A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion

To advance the design space of electrically-driven soft actuators, a flexible, architected soft robotic actuator is presented for motor-driven extensional motion. The actuator comprises a 3D printed, cylindrical handed shearing auxetic (HSA) structure and a deformable, internal rubber bellows shaft. The actuator linearly extends upon applying torque from a servo motor; the rubber bellows shaft is stretchable but resistant to torsional deflection, allowing it to transmit torque from the servo motor to the other end of the HSA. The high flexibility of the HSA and rubber bellows shaft enable the actuator to adaptively extend even when bent. The actuator's two components and its performance are mechanically characterized. Actuation strains of 45% elongation and a maximum blocked pushing force of about 8 N are demonstrated. The actuator's capabilities are showcased in two separate demonstrations: a crawling robot and a sensorized artificial muscle that integrates a microfluidic, liquid metal strain sensor. The architected material design approach for a robust, motor-driven soft actuator provides several unique features—including a compact form factor and ease of use—over other motorized soft robotic actuators based on HSA assemblies or cable tendon mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信