Jessica Rodríguez-Pereira, Helena Ramalhinho, Paula Sarrà
{"title":"用于规划大规模疫苗接种活动的启发式算法工具","authors":"Jessica Rodríguez-Pereira, Helena Ramalhinho, Paula Sarrà","doi":"10.1108/jhlscm-09-2023-0082","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe planning of massive vaccination campaigns often falls to nongovernmental organizations that have to face the critical challenge of vaccinating the largest number of people in the shortest time. This study aims to provide an easy tool for minimizing the duration of mass vaccination campaigns in rural and remote areas of developing countries.\n\n\nDesign/methodology/approach\nThis paper presents a linear mathematical model that combines location, scheduling and routing decisions that allows determining where to locate the vaccination centers, as well as the schedule/route that each medical team must follow to meet the target demand in the shortest time possible. In addition, the paper proposes an heuristic approach that can be integrated in a spreadsheet.\n\n\nFindings\nAs the numerical experiments show, the proposed heuristic provides good solutions in a short time. Due to its simplicity and flexibility, the proposed approach allows decision-makers to analyze and evaluate several possible scenarios for decision-making by simply playing with input parameters.\n\n\nSocial implications\nThe integration of the heuristic approach in a spreadsheet provides a simple and efficient tool to help decision-makers while avoiding the need for large investments in information systems infrastructure by user organizations.\n\n\nOriginality/value\nMotivated by a real-life problem and different from previous studies, the objective of the planning is to reduce the length of the vaccination campaigns with the available resources and ensure a target coverage instead of planning for minimizing costs or maximizing coverage. Furthermore, for helping implementation to practitioners, the heuristic can be solved in a spreadsheet.\n","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"112 45","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic algorithm tool for planning mass vaccine campaigns\",\"authors\":\"Jessica Rodríguez-Pereira, Helena Ramalhinho, Paula Sarrà\",\"doi\":\"10.1108/jhlscm-09-2023-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe planning of massive vaccination campaigns often falls to nongovernmental organizations that have to face the critical challenge of vaccinating the largest number of people in the shortest time. This study aims to provide an easy tool for minimizing the duration of mass vaccination campaigns in rural and remote areas of developing countries.\\n\\n\\nDesign/methodology/approach\\nThis paper presents a linear mathematical model that combines location, scheduling and routing decisions that allows determining where to locate the vaccination centers, as well as the schedule/route that each medical team must follow to meet the target demand in the shortest time possible. In addition, the paper proposes an heuristic approach that can be integrated in a spreadsheet.\\n\\n\\nFindings\\nAs the numerical experiments show, the proposed heuristic provides good solutions in a short time. Due to its simplicity and flexibility, the proposed approach allows decision-makers to analyze and evaluate several possible scenarios for decision-making by simply playing with input parameters.\\n\\n\\nSocial implications\\nThe integration of the heuristic approach in a spreadsheet provides a simple and efficient tool to help decision-makers while avoiding the need for large investments in information systems infrastructure by user organizations.\\n\\n\\nOriginality/value\\nMotivated by a real-life problem and different from previous studies, the objective of the planning is to reduce the length of the vaccination campaigns with the available resources and ensure a target coverage instead of planning for minimizing costs or maximizing coverage. Furthermore, for helping implementation to practitioners, the heuristic can be solved in a spreadsheet.\\n\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"112 45\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jhlscm-09-2023-0082\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jhlscm-09-2023-0082","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Heuristic algorithm tool for planning mass vaccine campaigns
Purpose
The planning of massive vaccination campaigns often falls to nongovernmental organizations that have to face the critical challenge of vaccinating the largest number of people in the shortest time. This study aims to provide an easy tool for minimizing the duration of mass vaccination campaigns in rural and remote areas of developing countries.
Design/methodology/approach
This paper presents a linear mathematical model that combines location, scheduling and routing decisions that allows determining where to locate the vaccination centers, as well as the schedule/route that each medical team must follow to meet the target demand in the shortest time possible. In addition, the paper proposes an heuristic approach that can be integrated in a spreadsheet.
Findings
As the numerical experiments show, the proposed heuristic provides good solutions in a short time. Due to its simplicity and flexibility, the proposed approach allows decision-makers to analyze and evaluate several possible scenarios for decision-making by simply playing with input parameters.
Social implications
The integration of the heuristic approach in a spreadsheet provides a simple and efficient tool to help decision-makers while avoiding the need for large investments in information systems infrastructure by user organizations.
Originality/value
Motivated by a real-life problem and different from previous studies, the objective of the planning is to reduce the length of the vaccination campaigns with the available resources and ensure a target coverage instead of planning for minimizing costs or maximizing coverage. Furthermore, for helping implementation to practitioners, the heuristic can be solved in a spreadsheet.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico