Wang Peng, Shangqi Zhai, Wu Hao, Qiongyuan Wu, Jianli Yan
{"title":"基于动态和静态数据反演的水淹前沿研究--案例研究","authors":"Wang Peng, Shangqi Zhai, Wu Hao, Qiongyuan Wu, Jianli Yan","doi":"10.1144/petgeo2023-061","DOIUrl":null,"url":null,"abstract":"To clarify the movement of water flooding front in fluvial reservoirs, this research takes BZ oilfield as an example. By comprehensively considering the [w1] equivalent flowing resistance theory of oil-water two phases, the horizontal micro-element equivalent method, and the strong heterogeneity of fluvial facies reservoir, the calculation model of non-piston water flooding front in horizontal well pattern is established. Firstly, five horizontal injection-production well groups in BZ oilfield are taken as examples to calculate the water breakthrough time of oil wells respectively. The calculation results are in good agreement with the actual production performance. In detail, the front advancing speed of the high permeability strip is 0.8 ∼ 1.6m/d, and the speed in low permeability strip is 0.12 ∼ 0.35m/d. When the oil well sees water, the advance speed of the low permeability strip becomes slower, resulting in uneven displacement and easily forming non-dominant potential areas. Moreover, the water flooding front advancing distance is simulated to be 300 ∼ 450m by establishing the reservoir numerical simulation model, which is close to the result of the proposed model, indicating that the calculation method is reliable. The research is of great significance for predicting the water breakthrough time of horizontal production wells, judging the weak affected area on the mainstream line, and timely optimizing water injection and tapping reservoir potential.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Water Flooding Front Based on Dynamic and Static Data Inversion—A case study\",\"authors\":\"Wang Peng, Shangqi Zhai, Wu Hao, Qiongyuan Wu, Jianli Yan\",\"doi\":\"10.1144/petgeo2023-061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To clarify the movement of water flooding front in fluvial reservoirs, this research takes BZ oilfield as an example. By comprehensively considering the [w1] equivalent flowing resistance theory of oil-water two phases, the horizontal micro-element equivalent method, and the strong heterogeneity of fluvial facies reservoir, the calculation model of non-piston water flooding front in horizontal well pattern is established. Firstly, five horizontal injection-production well groups in BZ oilfield are taken as examples to calculate the water breakthrough time of oil wells respectively. The calculation results are in good agreement with the actual production performance. In detail, the front advancing speed of the high permeability strip is 0.8 ∼ 1.6m/d, and the speed in low permeability strip is 0.12 ∼ 0.35m/d. When the oil well sees water, the advance speed of the low permeability strip becomes slower, resulting in uneven displacement and easily forming non-dominant potential areas. Moreover, the water flooding front advancing distance is simulated to be 300 ∼ 450m by establishing the reservoir numerical simulation model, which is close to the result of the proposed model, indicating that the calculation method is reliable. The research is of great significance for predicting the water breakthrough time of horizontal production wells, judging the weak affected area on the mainstream line, and timely optimizing water injection and tapping reservoir potential.\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2023-061\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2023-061","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on Water Flooding Front Based on Dynamic and Static Data Inversion—A case study
To clarify the movement of water flooding front in fluvial reservoirs, this research takes BZ oilfield as an example. By comprehensively considering the [w1] equivalent flowing resistance theory of oil-water two phases, the horizontal micro-element equivalent method, and the strong heterogeneity of fluvial facies reservoir, the calculation model of non-piston water flooding front in horizontal well pattern is established. Firstly, five horizontal injection-production well groups in BZ oilfield are taken as examples to calculate the water breakthrough time of oil wells respectively. The calculation results are in good agreement with the actual production performance. In detail, the front advancing speed of the high permeability strip is 0.8 ∼ 1.6m/d, and the speed in low permeability strip is 0.12 ∼ 0.35m/d. When the oil well sees water, the advance speed of the low permeability strip becomes slower, resulting in uneven displacement and easily forming non-dominant potential areas. Moreover, the water flooding front advancing distance is simulated to be 300 ∼ 450m by establishing the reservoir numerical simulation model, which is close to the result of the proposed model, indicating that the calculation method is reliable. The research is of great significance for predicting the water breakthrough time of horizontal production wells, judging the weak affected area on the mainstream line, and timely optimizing water injection and tapping reservoir potential.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.