Sen Cui, Abubakar Siddique, Waseem Aslam, Atif M. Alamri, Salman A. AlQahtani
{"title":"基于变功率点跟踪和储能协同控制的风力涡轮机一次频率平滑方法","authors":"Sen Cui, Abubakar Siddique, Waseem Aslam, Atif M. Alamri, Salman A. AlQahtani","doi":"10.1049/rpg2.13044","DOIUrl":null,"url":null,"abstract":"<p>The conventional deloading control has certain problems, such as low power generation efficiency and a small speed adjustment range. To improve the system's frequency quality and enhance the power grid's stability, this study comprehensively considers the effect of random source-load power fluctuations on the system frequency. Moreover, this study proposes a smooth primary frequency control strategy for wind turbine based on the coordinated control of the variable power point tracking and supercapacitor energy storage. The impact of wind power fluctuations on the system frequency at different timescales for wind turbine is studied based on the historical data of wind power fluctuations in a strong wind meteorological cycle of a wind farm. The method determines the capacity of the energy storage device required for frequency smoothing at the optimal timescale. In combination with the required capacity of the wind turbine to participate in the system's primary frequency regulation, the supercapacitor energy storage device is optimally configured, and a set of supercapacitor energy storage device with the lowest cost under the highest charging/discharging efficiency is designed. Simulation and experimental results show that the primary frequency adjustment capability of the control strategy proposed in this study is significantly improved compared with the conventional primary frequency modulation control.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13044","citationCount":"0","resultStr":"{\"title\":\"A smooth method for primary frequency of wind turbine based on variable power point tracking and energy storage cooperative control\",\"authors\":\"Sen Cui, Abubakar Siddique, Waseem Aslam, Atif M. Alamri, Salman A. AlQahtani\",\"doi\":\"10.1049/rpg2.13044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The conventional deloading control has certain problems, such as low power generation efficiency and a small speed adjustment range. To improve the system's frequency quality and enhance the power grid's stability, this study comprehensively considers the effect of random source-load power fluctuations on the system frequency. Moreover, this study proposes a smooth primary frequency control strategy for wind turbine based on the coordinated control of the variable power point tracking and supercapacitor energy storage. The impact of wind power fluctuations on the system frequency at different timescales for wind turbine is studied based on the historical data of wind power fluctuations in a strong wind meteorological cycle of a wind farm. The method determines the capacity of the energy storage device required for frequency smoothing at the optimal timescale. In combination with the required capacity of the wind turbine to participate in the system's primary frequency regulation, the supercapacitor energy storage device is optimally configured, and a set of supercapacitor energy storage device with the lowest cost under the highest charging/discharging efficiency is designed. Simulation and experimental results show that the primary frequency adjustment capability of the control strategy proposed in this study is significantly improved compared with the conventional primary frequency modulation control.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A smooth method for primary frequency of wind turbine based on variable power point tracking and energy storage cooperative control
The conventional deloading control has certain problems, such as low power generation efficiency and a small speed adjustment range. To improve the system's frequency quality and enhance the power grid's stability, this study comprehensively considers the effect of random source-load power fluctuations on the system frequency. Moreover, this study proposes a smooth primary frequency control strategy for wind turbine based on the coordinated control of the variable power point tracking and supercapacitor energy storage. The impact of wind power fluctuations on the system frequency at different timescales for wind turbine is studied based on the historical data of wind power fluctuations in a strong wind meteorological cycle of a wind farm. The method determines the capacity of the energy storage device required for frequency smoothing at the optimal timescale. In combination with the required capacity of the wind turbine to participate in the system's primary frequency regulation, the supercapacitor energy storage device is optimally configured, and a set of supercapacitor energy storage device with the lowest cost under the highest charging/discharging efficiency is designed. Simulation and experimental results show that the primary frequency adjustment capability of the control strategy proposed in this study is significantly improved compared with the conventional primary frequency modulation control.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf