干燥条件下的静态和动态弹性体摩擦建模

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Fabian Kaiser, Daniele Savio, Ravindrakumar Bactavatchalou
{"title":"干燥条件下的静态和动态弹性体摩擦建模","authors":"Fabian Kaiser, Daniele Savio, Ravindrakumar Bactavatchalou","doi":"10.3390/lubricants12070250","DOIUrl":null,"url":null,"abstract":"Understanding the tribological behavior of elastomers in dry conditions is essential for sealing applications, as dry contact may occur even in lubricated conditions due to local dewetting. In recent decades, Persson and co-authors have developed a comprehensive theory for rubber contact mechanics and dry friction. In this work, their model is implemented and extended, particularly by including static friction based on the bond population model by Juvekar and coworkers. Validation experiments are performed using a tribometer over a wide range of materials, temperatures and speeds. It is shown that the friction model presented in this work can predict the static and dynamic dry friction of various commercial rubber materials with different base polymers (FKM, EPDM and NBR) with an average accuracy of 10%. The model is then used to study the relevance of different elastomer friction contributions under various operating conditions and for different roughness of the counter surface. The present model will help in the development of novel optimized sealing solutions and provide a foundation for future modeling of lubricated elastomer friction.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of Static and Dynamic Elastomer Friction in Dry Conditions\",\"authors\":\"Fabian Kaiser, Daniele Savio, Ravindrakumar Bactavatchalou\",\"doi\":\"10.3390/lubricants12070250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the tribological behavior of elastomers in dry conditions is essential for sealing applications, as dry contact may occur even in lubricated conditions due to local dewetting. In recent decades, Persson and co-authors have developed a comprehensive theory for rubber contact mechanics and dry friction. In this work, their model is implemented and extended, particularly by including static friction based on the bond population model by Juvekar and coworkers. Validation experiments are performed using a tribometer over a wide range of materials, temperatures and speeds. It is shown that the friction model presented in this work can predict the static and dynamic dry friction of various commercial rubber materials with different base polymers (FKM, EPDM and NBR) with an average accuracy of 10%. The model is then used to study the relevance of different elastomer friction contributions under various operating conditions and for different roughness of the counter surface. The present model will help in the development of novel optimized sealing solutions and provide a foundation for future modeling of lubricated elastomer friction.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12070250\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12070250","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解弹性体在干燥条件下的摩擦学行为对于密封应用至关重要,因为即使在润滑条件下,也可能由于局部露湿而发生干接触。近几十年来,Persson 及其合著者开发了一套橡胶接触力学和干摩擦的综合理论。在这项工作中,他们的模型得到了实施和扩展,特别是加入了基于 Juvekar 及其同事的粘结群体模型的静摩擦力。在广泛的材料、温度和速度范围内,使用摩擦仪进行了验证实验。实验结果表明,本研究中提出的摩擦模型可以预测各种商用橡胶材料与不同基础聚合物(FKM、EPDM 和 NBR)的静态和动态干摩擦,平均精确度为 10%。然后,利用该模型研究了在各种操作条件下,不同弹性体对不同粗糙度台面的摩擦贡献的相关性。本模型将有助于开发新型优化密封解决方案,并为未来润滑弹性体摩擦建模奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling of Static and Dynamic Elastomer Friction in Dry Conditions
Understanding the tribological behavior of elastomers in dry conditions is essential for sealing applications, as dry contact may occur even in lubricated conditions due to local dewetting. In recent decades, Persson and co-authors have developed a comprehensive theory for rubber contact mechanics and dry friction. In this work, their model is implemented and extended, particularly by including static friction based on the bond population model by Juvekar and coworkers. Validation experiments are performed using a tribometer over a wide range of materials, temperatures and speeds. It is shown that the friction model presented in this work can predict the static and dynamic dry friction of various commercial rubber materials with different base polymers (FKM, EPDM and NBR) with an average accuracy of 10%. The model is then used to study the relevance of different elastomer friction contributions under various operating conditions and for different roughness of the counter surface. The present model will help in the development of novel optimized sealing solutions and provide a foundation for future modeling of lubricated elastomer friction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信