{"title":"基于复步导数的扩展卡尔曼滤波器用于双转子多输入多输出系统的状态估计","authors":"İbrahim Mucuk, Ayhan Özdemir","doi":"10.1049/cth2.12715","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the design of a complex-step extended Kalman filter (CS-EKF) to estimate the states of the twin-rotor MIMO system (TRMS) which is a non-linear system. Since the model of TRMS is quite complex and contains discontinuous functions, it is very difficult to calculate the Jacobian matrix in the TRMS analytically by hand. This makes it difficult to implement control methods that require Jacobian matrix calculation for TRMS. Herein, to calculate the Jacobian matrix, the CS-EKF uses the complex-step derivative approach, which is a numerical technique and offers near-analytical accuracy in a single function evaluation. The effectiveness of the CS-EKF is demonstrated through simulation and real-time experiments. Also, The CS-EKF is compared to the finite-difference extended Kalman filter (FD-EKF) and the unscented Kalman filter (UKF) in terms of estimation accuracy, computational load, and ease of implementation.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 15","pages":"1990-2002"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12715","citationCount":"0","resultStr":"{\"title\":\"Complex-step derivative-based extended Kalman filter for state estimation in twin rotor MIMO system\",\"authors\":\"İbrahim Mucuk, Ayhan Özdemir\",\"doi\":\"10.1049/cth2.12715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the design of a complex-step extended Kalman filter (CS-EKF) to estimate the states of the twin-rotor MIMO system (TRMS) which is a non-linear system. Since the model of TRMS is quite complex and contains discontinuous functions, it is very difficult to calculate the Jacobian matrix in the TRMS analytically by hand. This makes it difficult to implement control methods that require Jacobian matrix calculation for TRMS. Herein, to calculate the Jacobian matrix, the CS-EKF uses the complex-step derivative approach, which is a numerical technique and offers near-analytical accuracy in a single function evaluation. The effectiveness of the CS-EKF is demonstrated through simulation and real-time experiments. Also, The CS-EKF is compared to the finite-difference extended Kalman filter (FD-EKF) and the unscented Kalman filter (UKF) in terms of estimation accuracy, computational load, and ease of implementation.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 15\",\"pages\":\"1990-2002\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12715\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12715\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12715","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Complex-step derivative-based extended Kalman filter for state estimation in twin rotor MIMO system
This paper presents the design of a complex-step extended Kalman filter (CS-EKF) to estimate the states of the twin-rotor MIMO system (TRMS) which is a non-linear system. Since the model of TRMS is quite complex and contains discontinuous functions, it is very difficult to calculate the Jacobian matrix in the TRMS analytically by hand. This makes it difficult to implement control methods that require Jacobian matrix calculation for TRMS. Herein, to calculate the Jacobian matrix, the CS-EKF uses the complex-step derivative approach, which is a numerical technique and offers near-analytical accuracy in a single function evaluation. The effectiveness of the CS-EKF is demonstrated through simulation and real-time experiments. Also, The CS-EKF is compared to the finite-difference extended Kalman filter (FD-EKF) and the unscented Kalman filter (UKF) in terms of estimation accuracy, computational load, and ease of implementation.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.