H. Chikh-Rouhou, Lydia Kienbaum, A. Gharib, O. Fayos, A. Garcés-Claver
{"title":"突尼斯甜瓜(Cucumis melo L.)果实性状的组合能力与杂交育种","authors":"H. Chikh-Rouhou, Lydia Kienbaum, A. Gharib, O. Fayos, A. Garcés-Claver","doi":"10.3390/horticulturae10070724","DOIUrl":null,"url":null,"abstract":"A half-diallel cross study of seven melon inbred lines was carried out. The seven parents and their 21 F1 hybrids were evaluated for precocity of maturity, average weight per fruit, and fruit quality (fruit size, rind thickness, and soluble solids). The Diallel analysis was investigated for breeding values of these melon genotypes via general and specific combining ability, relationships between general and specific combining ability, and heterosis for the evaluated traits. The analysis of variance of the traits evaluated indicated highly significant differences among genotypes, suggesting the presence of adequate genetic variation for breeding. Additive genetic effects were most important with respect to fruit weight, while genetic dominance and epistasis effects mainly controlled fruit quality traits (fruit size, rind thickness, and TSS). Parent 1 (P1) and parent 3 (P3) had significant positive general combining ability effects for fruit weight. Also, P3 had positive general combining ability effects for fruit length and diameter, and cavity diameter. P3 was found to show maximum significant GCA in the desirable direction for all the traits except for TSS. Evaluation of heterosis (%) revealed that hybrid P1 × P3 can be considered as the best-performing hybrid for average fruit weight, TSS, and precocity, which also exhibited the highest positive and significant SCA effect for these traits. These results suggested that, among the melon genotypes studied, there is the potential to generate superior new varieties in hybrid production.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Ability and Hybrid Breeding in Tunisian Melon (Cucumis melo L.) for Fruit Traits\",\"authors\":\"H. Chikh-Rouhou, Lydia Kienbaum, A. Gharib, O. Fayos, A. Garcés-Claver\",\"doi\":\"10.3390/horticulturae10070724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A half-diallel cross study of seven melon inbred lines was carried out. The seven parents and their 21 F1 hybrids were evaluated for precocity of maturity, average weight per fruit, and fruit quality (fruit size, rind thickness, and soluble solids). The Diallel analysis was investigated for breeding values of these melon genotypes via general and specific combining ability, relationships between general and specific combining ability, and heterosis for the evaluated traits. The analysis of variance of the traits evaluated indicated highly significant differences among genotypes, suggesting the presence of adequate genetic variation for breeding. Additive genetic effects were most important with respect to fruit weight, while genetic dominance and epistasis effects mainly controlled fruit quality traits (fruit size, rind thickness, and TSS). Parent 1 (P1) and parent 3 (P3) had significant positive general combining ability effects for fruit weight. Also, P3 had positive general combining ability effects for fruit length and diameter, and cavity diameter. P3 was found to show maximum significant GCA in the desirable direction for all the traits except for TSS. Evaluation of heterosis (%) revealed that hybrid P1 × P3 can be considered as the best-performing hybrid for average fruit weight, TSS, and precocity, which also exhibited the highest positive and significant SCA effect for these traits. These results suggested that, among the melon genotypes studied, there is the potential to generate superior new varieties in hybrid production.\",\"PeriodicalId\":507445,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10070724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10070724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Ability and Hybrid Breeding in Tunisian Melon (Cucumis melo L.) for Fruit Traits
A half-diallel cross study of seven melon inbred lines was carried out. The seven parents and their 21 F1 hybrids were evaluated for precocity of maturity, average weight per fruit, and fruit quality (fruit size, rind thickness, and soluble solids). The Diallel analysis was investigated for breeding values of these melon genotypes via general and specific combining ability, relationships between general and specific combining ability, and heterosis for the evaluated traits. The analysis of variance of the traits evaluated indicated highly significant differences among genotypes, suggesting the presence of adequate genetic variation for breeding. Additive genetic effects were most important with respect to fruit weight, while genetic dominance and epistasis effects mainly controlled fruit quality traits (fruit size, rind thickness, and TSS). Parent 1 (P1) and parent 3 (P3) had significant positive general combining ability effects for fruit weight. Also, P3 had positive general combining ability effects for fruit length and diameter, and cavity diameter. P3 was found to show maximum significant GCA in the desirable direction for all the traits except for TSS. Evaluation of heterosis (%) revealed that hybrid P1 × P3 can be considered as the best-performing hybrid for average fruit weight, TSS, and precocity, which also exhibited the highest positive and significant SCA effect for these traits. These results suggested that, among the melon genotypes studied, there is the potential to generate superior new varieties in hybrid production.