Francisco Álvarez, Óscar Arnedillo, Diego Rodríguez, Jorge Sanz
{"title":"以最低成本实现脱碳:最佳工具组合分析","authors":"Francisco Álvarez, Óscar Arnedillo, Diego Rodríguez, Jorge Sanz","doi":"10.1108/aea-01-2024-0012","DOIUrl":null,"url":null,"abstract":"Purpose\nThis paper aims to propose a methodology for assessing an optimal portfolio of investment instruments that minimise the social costs of decarbonising economic activity while improving the environmental objectives proposed in EU legislation.\n\nDesign/methodology/approach\nThe methodology defines the net social cost of decarbonisation related to a portfolio of four instruments: installation of solar PV and wind generation, thermal insulation of households and deployment of heat pumps. The social cost is minimised by restricting it to the minimum level of the targets proposed in the Spanish National Energy and Climate Plan to reduce greenhouse gas emissions, increase generation from renewable sources and reduce energy consumption. The empirical approach also includes differences between regions according to the expected effect for instruments.\n\nFindings\nThe application of this methodology to the environmental objectives defined in the current Spanish National Energy and Climate Plan for 2030 concludes that it is clearly possible to reduce the social cost of decarbonisation while improving environmental performance through a reorientation of investment instruments. In this case, such a reorientation would be based on a minimisation of efforts in thermal insulation of households and a maximisation of measures aimed at the installation of heat pumps.\n\nOriginality/value\nThe paper proposes a novel methodology for a social cost assessment that improves the allocation of a portfolio of environmental instruments. This portfolio could be extended in further work to include instruments related to transport or support for industrial decarbonisation, such as the deployment of renewable hydrogen, among others.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"66 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decarbonisation at least cost: an analysis of the optimal portfolio of instruments\",\"authors\":\"Francisco Álvarez, Óscar Arnedillo, Diego Rodríguez, Jorge Sanz\",\"doi\":\"10.1108/aea-01-2024-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose\\nThis paper aims to propose a methodology for assessing an optimal portfolio of investment instruments that minimise the social costs of decarbonising economic activity while improving the environmental objectives proposed in EU legislation.\\n\\nDesign/methodology/approach\\nThe methodology defines the net social cost of decarbonisation related to a portfolio of four instruments: installation of solar PV and wind generation, thermal insulation of households and deployment of heat pumps. The social cost is minimised by restricting it to the minimum level of the targets proposed in the Spanish National Energy and Climate Plan to reduce greenhouse gas emissions, increase generation from renewable sources and reduce energy consumption. The empirical approach also includes differences between regions according to the expected effect for instruments.\\n\\nFindings\\nThe application of this methodology to the environmental objectives defined in the current Spanish National Energy and Climate Plan for 2030 concludes that it is clearly possible to reduce the social cost of decarbonisation while improving environmental performance through a reorientation of investment instruments. In this case, such a reorientation would be based on a minimisation of efforts in thermal insulation of households and a maximisation of measures aimed at the installation of heat pumps.\\n\\nOriginality/value\\nThe paper proposes a novel methodology for a social cost assessment that improves the allocation of a portfolio of environmental instruments. This portfolio could be extended in further work to include instruments related to transport or support for industrial decarbonisation, such as the deployment of renewable hydrogen, among others.\\n\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"66 6\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1108/aea-01-2024-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/aea-01-2024-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Decarbonisation at least cost: an analysis of the optimal portfolio of instruments
Purpose
This paper aims to propose a methodology for assessing an optimal portfolio of investment instruments that minimise the social costs of decarbonising economic activity while improving the environmental objectives proposed in EU legislation.
Design/methodology/approach
The methodology defines the net social cost of decarbonisation related to a portfolio of four instruments: installation of solar PV and wind generation, thermal insulation of households and deployment of heat pumps. The social cost is minimised by restricting it to the minimum level of the targets proposed in the Spanish National Energy and Climate Plan to reduce greenhouse gas emissions, increase generation from renewable sources and reduce energy consumption. The empirical approach also includes differences between regions according to the expected effect for instruments.
Findings
The application of this methodology to the environmental objectives defined in the current Spanish National Energy and Climate Plan for 2030 concludes that it is clearly possible to reduce the social cost of decarbonisation while improving environmental performance through a reorientation of investment instruments. In this case, such a reorientation would be based on a minimisation of efforts in thermal insulation of households and a maximisation of measures aimed at the installation of heat pumps.
Originality/value
The paper proposes a novel methodology for a social cost assessment that improves the allocation of a portfolio of environmental instruments. This portfolio could be extended in further work to include instruments related to transport or support for industrial decarbonisation, such as the deployment of renewable hydrogen, among others.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.