无铅过氧化物及其衍生物的独特光电特性和应用

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingbian Li, Weijun Li, Haotong Wei
{"title":"无铅过氧化物及其衍生物的独特光电特性和应用","authors":"Mingbian Li, Weijun Li, Haotong Wei","doi":"10.1002/adpr.202400095","DOIUrl":null,"url":null,"abstract":"The pursuit of lead‐free alternatives to lead halide perovskites has gained significant momentum due to the environmental concerns associated with lead toxicity. The adverse effects of lead on human health and the environment have prompted a shift toward developing sustainable and eco‐friendly perovskite materials for various optoelectronic devices. This shift is particularly vital in emerging technologies where perovskites play a crucial role, such as solar cells, X‐ray detectors, photodetectors, light‐emitting diodes (LEDs), etc. Consequently, it is paramount to understand the fundamental properties, synthesis methods, and structural characteristics of lead‐free perovskites. This review aims to provide a comprehensive analysis of the intricate relationship between the structures and properties of lead‐free perovskites, shedding light on their applications across diverse fields. The focus on environmentally benign, high‐performing, and lead‐free perovskite materials underscores the urgency and significance of research efforts in driving the development of sustainable and efficient optoelectronic technologies.","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique Optoelectronic Properties and Applications of Lead‐Free Perovskites and Derivatives\",\"authors\":\"Mingbian Li, Weijun Li, Haotong Wei\",\"doi\":\"10.1002/adpr.202400095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pursuit of lead‐free alternatives to lead halide perovskites has gained significant momentum due to the environmental concerns associated with lead toxicity. The adverse effects of lead on human health and the environment have prompted a shift toward developing sustainable and eco‐friendly perovskite materials for various optoelectronic devices. This shift is particularly vital in emerging technologies where perovskites play a crucial role, such as solar cells, X‐ray detectors, photodetectors, light‐emitting diodes (LEDs), etc. Consequently, it is paramount to understand the fundamental properties, synthesis methods, and structural characteristics of lead‐free perovskites. This review aims to provide a comprehensive analysis of the intricate relationship between the structures and properties of lead‐free perovskites, shedding light on their applications across diverse fields. The focus on environmentally benign, high‐performing, and lead‐free perovskite materials underscores the urgency and significance of research efforts in driving the development of sustainable and efficient optoelectronic technologies.\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/adpr.202400095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/adpr.202400095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于与铅毒性相关的环境问题,人们对卤化铅包晶石无铅替代品的追求获得了巨大的动力。铅对人类健康和环境的不利影响促使人们转向开发用于各种光电设备的可持续和生态友好型过氧化物材料。这种转变在新兴技术中尤为重要,因为在这些技术中,包晶石发挥着至关重要的作用,如太阳能电池、X 射线探测器、光电探测器、发光二极管 (LED) 等。因此,了解无铅包晶的基本性质、合成方法和结构特征至关重要。本综述旨在全面分析无铅包光体结构与性能之间的复杂关系,揭示其在不同领域的应用。对环境友好、高性能和无铅包光体材料的关注强调了研究工作在推动可持续高效光电技术发展方面的紧迫性和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique Optoelectronic Properties and Applications of Lead‐Free Perovskites and Derivatives
The pursuit of lead‐free alternatives to lead halide perovskites has gained significant momentum due to the environmental concerns associated with lead toxicity. The adverse effects of lead on human health and the environment have prompted a shift toward developing sustainable and eco‐friendly perovskite materials for various optoelectronic devices. This shift is particularly vital in emerging technologies where perovskites play a crucial role, such as solar cells, X‐ray detectors, photodetectors, light‐emitting diodes (LEDs), etc. Consequently, it is paramount to understand the fundamental properties, synthesis methods, and structural characteristics of lead‐free perovskites. This review aims to provide a comprehensive analysis of the intricate relationship between the structures and properties of lead‐free perovskites, shedding light on their applications across diverse fields. The focus on environmentally benign, high‐performing, and lead‐free perovskite materials underscores the urgency and significance of research efforts in driving the development of sustainable and efficient optoelectronic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信