改进基于 YOLOX 的道路井盖状况检测技术

IF 2.2 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Li Yang, Zhongyu Hao, Bo Hu, Chaoyang Shan, Dehong Wei, Dixuan He
{"title":"改进基于 YOLOX 的道路井盖状况检测技术","authors":"Li Yang, Zhongyu Hao, Bo Hu, Chaoyang Shan, Dehong Wei, Dixuan He","doi":"10.3389/fbuil.2024.1337984","DOIUrl":null,"url":null,"abstract":"Manhole cover damage poses significant threats to road safety and infrastructure integrity, necessitating timely detection and repair. To address this, we introduce an enhanced YOLOX model integrated with ECA (High Efficiency Channel Attention) modules for real-time monitoring using car recorder footage. Our method categorizes manhole cover conditions into three distinct states: normal, broken, and down. By in-corporating ECA-Net before the decoupling head of the YOLOX model, we significantly boost its channel feature extraction abilities, critical for distinguishing subtle changes in cover conditions. Experimental results reveal a substantial increase in mean Average Precision (mAP) to 93.91%, with a notable AP of 92.2% achieved in the detection of the ‘down’ state, historically the most challenging category. Despite the en-hancements, our model maintains a high detection speed, processing at an average rate only five images per second slower than the original YOLOX model. Comparative analyses against leading detection models, in-cluding Faster R-CNN, SSD, and CenterNet, underscore the superiority of our approach in terms of both accuracy and speed, particularly in accurately recognizing the ‘down’ condition of manhole covers. This in-novative model provides a reliable tool for swiftly identifying damaged manhole covers and their precise lo-cations, enabling prompt maintenance actions. By improving the monitoring efficiency of urban infrastruc-ture, our solution contributes to enhanced road safety and the advancement of smart city technologies.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved YOLOX-based detection of condition of road manhole covers\",\"authors\":\"Li Yang, Zhongyu Hao, Bo Hu, Chaoyang Shan, Dehong Wei, Dixuan He\",\"doi\":\"10.3389/fbuil.2024.1337984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manhole cover damage poses significant threats to road safety and infrastructure integrity, necessitating timely detection and repair. To address this, we introduce an enhanced YOLOX model integrated with ECA (High Efficiency Channel Attention) modules for real-time monitoring using car recorder footage. Our method categorizes manhole cover conditions into three distinct states: normal, broken, and down. By in-corporating ECA-Net before the decoupling head of the YOLOX model, we significantly boost its channel feature extraction abilities, critical for distinguishing subtle changes in cover conditions. Experimental results reveal a substantial increase in mean Average Precision (mAP) to 93.91%, with a notable AP of 92.2% achieved in the detection of the ‘down’ state, historically the most challenging category. Despite the en-hancements, our model maintains a high detection speed, processing at an average rate only five images per second slower than the original YOLOX model. Comparative analyses against leading detection models, in-cluding Faster R-CNN, SSD, and CenterNet, underscore the superiority of our approach in terms of both accuracy and speed, particularly in accurately recognizing the ‘down’ condition of manhole covers. This in-novative model provides a reliable tool for swiftly identifying damaged manhole covers and their precise lo-cations, enabling prompt maintenance actions. By improving the monitoring efficiency of urban infrastruc-ture, our solution contributes to enhanced road safety and the advancement of smart city technologies.\",\"PeriodicalId\":37112,\"journal\":{\"name\":\"Frontiers in Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbuil.2024.1337984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbuil.2024.1337984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

井盖损坏对道路安全和基础设施的完整性构成重大威胁,需要及时发现和修复。为解决这一问题,我们推出了一种集成了 ECA(高效通道关注)模块的增强型 YOLOX 模型,可利用行车记录仪录像进行实时监控。我们的方法将井盖状况分为三种不同的状态:正常、损坏和损坏。在 YOLOX 模型的解耦头之前加入 ECA-Net 后,我们大大提高了其信道特征提取能力,这对于区分井盖状况的细微变化至关重要。实验结果表明,平均精确度(mAP)大幅提高到 93.91%,在检测 "下降 "状态时,平均精确度达到 92.2%,这在历史上是最具挑战性的类别。尽管取得了这些进步,我们的模型仍保持了较高的检测速度,平均每秒处理图像的速度仅比最初的 YOLOX 模型慢 5 幅。与包括 Faster R-CNN、SSD 和 CenterNet 在内的领先检测模型的比较分析表明,我们的方法在准确性和速度方面都更胜一筹,尤其是在准确识别井盖的 "下降 "状态方面。这一创新模型为迅速识别损坏的井盖及其精确位置提供了可靠的工具,从而能够及时采取维护行动。通过提高城市基础设施的监控效率,我们的解决方案有助于加强道路安全和推进智慧城市技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved YOLOX-based detection of condition of road manhole covers
Manhole cover damage poses significant threats to road safety and infrastructure integrity, necessitating timely detection and repair. To address this, we introduce an enhanced YOLOX model integrated with ECA (High Efficiency Channel Attention) modules for real-time monitoring using car recorder footage. Our method categorizes manhole cover conditions into three distinct states: normal, broken, and down. By in-corporating ECA-Net before the decoupling head of the YOLOX model, we significantly boost its channel feature extraction abilities, critical for distinguishing subtle changes in cover conditions. Experimental results reveal a substantial increase in mean Average Precision (mAP) to 93.91%, with a notable AP of 92.2% achieved in the detection of the ‘down’ state, historically the most challenging category. Despite the en-hancements, our model maintains a high detection speed, processing at an average rate only five images per second slower than the original YOLOX model. Comparative analyses against leading detection models, in-cluding Faster R-CNN, SSD, and CenterNet, underscore the superiority of our approach in terms of both accuracy and speed, particularly in accurately recognizing the ‘down’ condition of manhole covers. This in-novative model provides a reliable tool for swiftly identifying damaged manhole covers and their precise lo-cations, enabling prompt maintenance actions. By improving the monitoring efficiency of urban infrastruc-ture, our solution contributes to enhanced road safety and the advancement of smart city technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Built Environment
Frontiers in Built Environment Social Sciences-Urban Studies
CiteScore
4.80
自引率
6.70%
发文量
266
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信