磁性霍尔效应传感器的 TCAD 建模

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY
Vartika Pandey, V. Marsic, P. Igic, S. Faramehr
{"title":"磁性霍尔效应传感器的 TCAD 建模","authors":"Vartika Pandey, V. Marsic, P. Igic, S. Faramehr","doi":"10.3390/inventions9040072","DOIUrl":null,"url":null,"abstract":"In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCAD Modelling of Magnetic Hall Effect Sensors\",\"authors\":\"Vartika Pandey, V. Marsic, P. Igic, S. Faramehr\",\"doi\":\"10.3390/inventions9040072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.\",\"PeriodicalId\":14564,\"journal\":{\"name\":\"Inventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inventions9040072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9040072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文使用 TCAD Sentaurus 仿真工具箱对氮化镓(GaN)磁霍尔效应电流传感器进行了二维和三维仿真。该模型在所有模拟中都考虑了压电极化效应以及肖克利-雷德-霍尔(SRH)和费米-狄拉克统计量。TCAD Sentaurus 的电流传输模型用于模拟传感器的洛伦兹力和磁性。根据实验数据对电流差、总电流和灵敏度模拟进行了系统校准。在不同的环境温度下,使用不同的几何和偏置参数对传感器进行了优化。当漏极间距减小到 1 μm 并将源极到漏极间距增大到 76 μm 时,这种无意掺杂的非门控电流传感器的灵敏度提高到 16.5 %T-1。结果表明,与 300 K (S = 16.5 %T-1) 相比,灵敏度在 448 K (S = 12 %T-1) 和 373 K (S = 14.1 %T-1) 时有所降低。模拟结果表明,氮化镓传感器在高温下的灵敏度很高,优于硅传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCAD Modelling of Magnetic Hall Effect Sensors
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信