作为结构-功能一体化材料的镁合金综述

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding
{"title":"作为结构-功能一体化材料的镁合金综述","authors":"Zhenfei Jiang,&nbsp;Bo Hu,&nbsp;Zixin Li,&nbsp;Fanjin Yao,&nbsp;Jiaxuan Han,&nbsp;Dejiang Li,&nbsp;Xiaoqin Zeng,&nbsp;Wenjiang Ding","doi":"10.1007/s40195-024-01706-z","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium alloys have a significant advantage, lower density over the other structure materials; hence, they have been widely used in various fields such as transportation and aerospace. With the development of research and the enlargement of the research scope, more advantages have been revealed: excellent shielding efficiency, extraordinarily high damping capacity, as well as impressive thermal conductivity. Therefore, Mg alloys have the potential to be various functional materials, such as electromagnetic shielding material, damping material, and thermal conductive material. This review comprehensively summarizes the research progress and the up-to-date summary of Mg alloys as structure–function integrated materials in recent years. Solute atoms, heat treatment, deformation, secondary phase, and temperature, which have a significant influence on the properties of magnesium alloys, are highlighted. We expect this review to be helpful for those who are working on developing structure–function integrated materials with superior comprehensive performance.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Magnesium Alloys as Structure–Function Integrated Materials\",\"authors\":\"Zhenfei Jiang,&nbsp;Bo Hu,&nbsp;Zixin Li,&nbsp;Fanjin Yao,&nbsp;Jiaxuan Han,&nbsp;Dejiang Li,&nbsp;Xiaoqin Zeng,&nbsp;Wenjiang Ding\",\"doi\":\"10.1007/s40195-024-01706-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium alloys have a significant advantage, lower density over the other structure materials; hence, they have been widely used in various fields such as transportation and aerospace. With the development of research and the enlargement of the research scope, more advantages have been revealed: excellent shielding efficiency, extraordinarily high damping capacity, as well as impressive thermal conductivity. Therefore, Mg alloys have the potential to be various functional materials, such as electromagnetic shielding material, damping material, and thermal conductive material. This review comprehensively summarizes the research progress and the up-to-date summary of Mg alloys as structure–function integrated materials in recent years. Solute atoms, heat treatment, deformation, secondary phase, and temperature, which have a significant influence on the properties of magnesium alloys, are highlighted. We expect this review to be helpful for those who are working on developing structure–function integrated materials with superior comprehensive performance.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01706-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01706-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

与其他结构材料相比,镁合金具有密度低的显著优势,因此被广泛应用于交通和航空航天等各个领域。随着研究的发展和研究范围的扩大,镁合金的更多优势已经显现出来:卓越的屏蔽效率、超高的阻尼能力以及惊人的导热性。因此,镁合金有望成为多种功能材料,如电磁屏蔽材料、阻尼材料和导热材料。本综述全面总结了近年来镁合金作为结构-功能一体化材料的研究进展和最新总结。重点介绍了对镁合金性能有重要影响的溶质原子、热处理、变形、次生相和温度。我们希望这篇综述能对那些致力于开发具有卓越综合性能的结构-功能一体化材料的人有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Review of Magnesium Alloys as Structure–Function Integrated Materials

A Review of Magnesium Alloys as Structure–Function Integrated Materials

Magnesium alloys have a significant advantage, lower density over the other structure materials; hence, they have been widely used in various fields such as transportation and aerospace. With the development of research and the enlargement of the research scope, more advantages have been revealed: excellent shielding efficiency, extraordinarily high damping capacity, as well as impressive thermal conductivity. Therefore, Mg alloys have the potential to be various functional materials, such as electromagnetic shielding material, damping material, and thermal conductive material. This review comprehensively summarizes the research progress and the up-to-date summary of Mg alloys as structure–function integrated materials in recent years. Solute atoms, heat treatment, deformation, secondary phase, and temperature, which have a significant influence on the properties of magnesium alloys, are highlighted. We expect this review to be helpful for those who are working on developing structure–function integrated materials with superior comprehensive performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信