S. Durga, Esther Daniel, J. Andrew, Radhakrishna Bhat
{"title":"智能心脏:通过物联网和边缘云智能推进心脏风险预测","authors":"S. Durga, Esther Daniel, J. Andrew, Radhakrishna Bhat","doi":"10.1049/wss2.12085","DOIUrl":null,"url":null,"abstract":"<p>Cardiovascular disease is a leading cause of illness and death globally. The integration of Internet of Things (IoT) and deep learning technologies, including transfer learning, has transformed healthcare by improving the prediction and monitoring of conditions such as arrhythmias, which can be fatal if not detected and treated promptly. Traditional methods often lack real-time accuracy due to scattered data sources. A novel heart care approach utilising IoT technology and edge cloud computing is introduced to provide rapid, automated responses and support decision-making. The system connects smart devices, sensors, and healthcare providers to predict patient conditions and deliver accessible healthcare services. It consists of two main phases: data acquisition, where sensors measure heart rate, temperature, and blood pressure, and data processing, where the edge cloud processes the data using Haar Wavelet transform, Convolutional Neural Network (CNN), and transfer learning. Experimental results demonstrate that this smart cardio system achieves 99.3% accuracy with reduced network delay and response time, outperforming traditional methods, such as k-nearest neighbours, support vector machine, and discrete wavelet-based convolutional neural network.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"14 6","pages":"348-362"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12085","citationCount":"0","resultStr":"{\"title\":\"SmartCardio: Advancing cardiac risk prediction through Internet of Things and edge cloud intelligence\",\"authors\":\"S. Durga, Esther Daniel, J. Andrew, Radhakrishna Bhat\",\"doi\":\"10.1049/wss2.12085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cardiovascular disease is a leading cause of illness and death globally. The integration of Internet of Things (IoT) and deep learning technologies, including transfer learning, has transformed healthcare by improving the prediction and monitoring of conditions such as arrhythmias, which can be fatal if not detected and treated promptly. Traditional methods often lack real-time accuracy due to scattered data sources. A novel heart care approach utilising IoT technology and edge cloud computing is introduced to provide rapid, automated responses and support decision-making. The system connects smart devices, sensors, and healthcare providers to predict patient conditions and deliver accessible healthcare services. It consists of two main phases: data acquisition, where sensors measure heart rate, temperature, and blood pressure, and data processing, where the edge cloud processes the data using Haar Wavelet transform, Convolutional Neural Network (CNN), and transfer learning. Experimental results demonstrate that this smart cardio system achieves 99.3% accuracy with reduced network delay and response time, outperforming traditional methods, such as k-nearest neighbours, support vector machine, and discrete wavelet-based convolutional neural network.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":\"14 6\",\"pages\":\"348-362\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
SmartCardio: Advancing cardiac risk prediction through Internet of Things and edge cloud intelligence
Cardiovascular disease is a leading cause of illness and death globally. The integration of Internet of Things (IoT) and deep learning technologies, including transfer learning, has transformed healthcare by improving the prediction and monitoring of conditions such as arrhythmias, which can be fatal if not detected and treated promptly. Traditional methods often lack real-time accuracy due to scattered data sources. A novel heart care approach utilising IoT technology and edge cloud computing is introduced to provide rapid, automated responses and support decision-making. The system connects smart devices, sensors, and healthcare providers to predict patient conditions and deliver accessible healthcare services. It consists of two main phases: data acquisition, where sensors measure heart rate, temperature, and blood pressure, and data processing, where the edge cloud processes the data using Haar Wavelet transform, Convolutional Neural Network (CNN), and transfer learning. Experimental results demonstrate that this smart cardio system achieves 99.3% accuracy with reduced network delay and response time, outperforming traditional methods, such as k-nearest neighbours, support vector machine, and discrete wavelet-based convolutional neural network.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.