{"title":"利用第 11 族金属纳米团簇推进二氧化碳电化学还原,实现可再生能源解决方案","authors":"Sourav Biswas, Yamato Shingyouchi, Masaki Ogami, Maho Kamiyama, Tokuhisa Kawawaki, Yuichi Negishi","doi":"10.1002/ece2.56","DOIUrl":null,"url":null,"abstract":"<p>Understanding the intricate relationship between structure and properties is paramount in distinguishing nanocluster (NC) materials from their counterparts. Despite the progress in synthesizing new NCs, the sluggish exploration of their potential applications persists due to the difficulty in stabilizing these materials. However, recent investigations have unveiled their remarkable efficacy as catalysts in electrochemical CO<sub>2</sub> reduction reactions, surpassing traditional materials. This discovery, addressing urgent global concerns, has quickly drawn significant attention to this field, leading to its rapid expansion. Hence, there is an urgent need to outline this research landscape and pinpoint effective strategies, marking a significant advancement. In this context, our endeavor is dedicated to offering researchers a thorough understanding of recently synthesized NC materials. We aim to elucidate their distinct structural architectures and associated properties essential for catalyst design. We envision that this systematic review will serve as a guiding beacon for future research endeavors in this burgeoning field.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 3","pages":"400-418"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.56","citationCount":"0","resultStr":"{\"title\":\"Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions\",\"authors\":\"Sourav Biswas, Yamato Shingyouchi, Masaki Ogami, Maho Kamiyama, Tokuhisa Kawawaki, Yuichi Negishi\",\"doi\":\"10.1002/ece2.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the intricate relationship between structure and properties is paramount in distinguishing nanocluster (NC) materials from their counterparts. Despite the progress in synthesizing new NCs, the sluggish exploration of their potential applications persists due to the difficulty in stabilizing these materials. However, recent investigations have unveiled their remarkable efficacy as catalysts in electrochemical CO<sub>2</sub> reduction reactions, surpassing traditional materials. This discovery, addressing urgent global concerns, has quickly drawn significant attention to this field, leading to its rapid expansion. Hence, there is an urgent need to outline this research landscape and pinpoint effective strategies, marking a significant advancement. In this context, our endeavor is dedicated to offering researchers a thorough understanding of recently synthesized NC materials. We aim to elucidate their distinct structural architectures and associated properties essential for catalyst design. We envision that this systematic review will serve as a guiding beacon for future research endeavors in this burgeoning field.</p>\",\"PeriodicalId\":100387,\"journal\":{\"name\":\"EcoEnergy\",\"volume\":\"2 3\",\"pages\":\"400-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.56\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece2.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions
Understanding the intricate relationship between structure and properties is paramount in distinguishing nanocluster (NC) materials from their counterparts. Despite the progress in synthesizing new NCs, the sluggish exploration of their potential applications persists due to the difficulty in stabilizing these materials. However, recent investigations have unveiled their remarkable efficacy as catalysts in electrochemical CO2 reduction reactions, surpassing traditional materials. This discovery, addressing urgent global concerns, has quickly drawn significant attention to this field, leading to its rapid expansion. Hence, there is an urgent need to outline this research landscape and pinpoint effective strategies, marking a significant advancement. In this context, our endeavor is dedicated to offering researchers a thorough understanding of recently synthesized NC materials. We aim to elucidate their distinct structural architectures and associated properties essential for catalyst design. We envision that this systematic review will serve as a guiding beacon for future research endeavors in this burgeoning field.