通过银形态调节 CO2-CO 的电催化性能

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guanhua Xu, xudong qiu, Xiaoguang Li
{"title":"通过银形态调节 CO2-CO 的电催化性能","authors":"Guanhua Xu, xudong qiu, Xiaoguang Li","doi":"10.1149/2162-8777/ad620f","DOIUrl":null,"url":null,"abstract":"\n Highly selective conversion of CO2 into CO molecules remains a major challenge in electrocatalytic CO2 reduction reactions, and metallic silver-based materials have great potential. However, the selectivity and activity of traditional silver (Ag)-based materials cannot reach the desired level, and the development of new Ag-based materials has become a hot research topic. Here, novel ag-glomerated spore-shaped Ag nanomaterials are reported for the efficient reduction of CO2 to CO. The unique nanostructures endowed with larger specific surface area, and the spore-like dispersed Ag nanoparticles (NPs) have more unsaturated Ag sites, which endowed the catalysts with higher intrinsic activity. Electrochemical tests show that spore-like Ag can obtain a Faraday efficiency (FE) of 95.6% at -1 V vs. RHE, which is much higher than that of Ag nanowires (NWs) (73%) and ordinary Ag NPs (83%) synthesized in the same period. By using the three different morphologies of Ag synthesized as a research platform and statistically comparing the FE in the corresponding voltage interval, we obtained the influence of morphology effect on the selectivity of CO product production by electrocatalytic CO2 production over Ag-based catalysts, which can be further used as a guideline for catalyst development.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating the Electrocatalytic CO2-CO Performance by Ag Morphology\",\"authors\":\"Guanhua Xu, xudong qiu, Xiaoguang Li\",\"doi\":\"10.1149/2162-8777/ad620f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Highly selective conversion of CO2 into CO molecules remains a major challenge in electrocatalytic CO2 reduction reactions, and metallic silver-based materials have great potential. However, the selectivity and activity of traditional silver (Ag)-based materials cannot reach the desired level, and the development of new Ag-based materials has become a hot research topic. Here, novel ag-glomerated spore-shaped Ag nanomaterials are reported for the efficient reduction of CO2 to CO. The unique nanostructures endowed with larger specific surface area, and the spore-like dispersed Ag nanoparticles (NPs) have more unsaturated Ag sites, which endowed the catalysts with higher intrinsic activity. Electrochemical tests show that spore-like Ag can obtain a Faraday efficiency (FE) of 95.6% at -1 V vs. RHE, which is much higher than that of Ag nanowires (NWs) (73%) and ordinary Ag NPs (83%) synthesized in the same period. By using the three different morphologies of Ag synthesized as a research platform and statistically comparing the FE in the corresponding voltage interval, we obtained the influence of morphology effect on the selectivity of CO product production by electrocatalytic CO2 production over Ag-based catalysts, which can be further used as a guideline for catalyst development.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad620f\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad620f","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高选择性地将 CO2 转化为 CO 分子仍然是电催化 CO2 还原反应中的一大挑战,而金属银基材料具有巨大的潜力。然而,传统银基材料的选择性和活性无法达到理想水平,开发新型银基材料已成为研究热点。本文报道了新型琼脂团孢状银纳米材料,用于将 CO2 高效还原为 CO。这种独特的纳米结构具有更大的比表面积,孢子状分散的银纳米粒子(NPs)具有更多的不饱和银位点,从而赋予催化剂更高的内在活性。电化学测试表明,孢子状银在-1 V对RHE的电压下可获得95.6%的法拉第效率(FE),远高于同期合成的银纳米线(NWs)(73%)和普通银纳米粒子(NPs)(83%)。我们以合成的三种不同形态的 Ag 为研究平台,统计比较了相应电压区间的 FE,得到了形态效应对 Ag 基催化剂电催化生产 CO2 产物选择性的影响,可进一步作为催化剂开发的指导原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating the Electrocatalytic CO2-CO Performance by Ag Morphology
Highly selective conversion of CO2 into CO molecules remains a major challenge in electrocatalytic CO2 reduction reactions, and metallic silver-based materials have great potential. However, the selectivity and activity of traditional silver (Ag)-based materials cannot reach the desired level, and the development of new Ag-based materials has become a hot research topic. Here, novel ag-glomerated spore-shaped Ag nanomaterials are reported for the efficient reduction of CO2 to CO. The unique nanostructures endowed with larger specific surface area, and the spore-like dispersed Ag nanoparticles (NPs) have more unsaturated Ag sites, which endowed the catalysts with higher intrinsic activity. Electrochemical tests show that spore-like Ag can obtain a Faraday efficiency (FE) of 95.6% at -1 V vs. RHE, which is much higher than that of Ag nanowires (NWs) (73%) and ordinary Ag NPs (83%) synthesized in the same period. By using the three different morphologies of Ag synthesized as a research platform and statistically comparing the FE in the corresponding voltage interval, we obtained the influence of morphology effect on the selectivity of CO product production by electrocatalytic CO2 production over Ag-based catalysts, which can be further used as a guideline for catalyst development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信