{"title":"1971 年至 2020 年期间选定的气候要素与中东欧暖半年土壤水分不足增加之间的关系","authors":"Krzysztof Bartoszek, Dorota Matuszko","doi":"10.1002/joc.8555","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an analysis of the relationships between soil moisture, cloud cover, solar radiation, air temperature and humidity, and precipitation during the warm half of the year in East-Central Europe over the years 1971–2020. The temporal and spatial variability of these meteorological elements is presented in association with the occurrence of anticyclonic blocking events over the study area. It demonstrates that changes in soil moisture in East-Central Europe point to the combined influence of many meteorological factors resulting from the atmospheric circulation, and are an indicator of the comprehensive relationships among those factors. The main factors affecting soil water content are precipitation and evapotranspiration, which in turn depend on air humidity, cloudiness, intensity of solar radiation and air temperature. The increase in the frequency and duration of sequences of days with blocking events in East-Central Europe has contributed to an increased probability of longer periods with soil moisture negative anomalies.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 11","pages":"3850-3866"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8555","citationCount":"0","resultStr":"{\"title\":\"Relations between selected elements of climate and an increase in soil moisture deficit in the warm half-year in East-Central Europe between 1971 and 2020\",\"authors\":\"Krzysztof Bartoszek, Dorota Matuszko\",\"doi\":\"10.1002/joc.8555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents an analysis of the relationships between soil moisture, cloud cover, solar radiation, air temperature and humidity, and precipitation during the warm half of the year in East-Central Europe over the years 1971–2020. The temporal and spatial variability of these meteorological elements is presented in association with the occurrence of anticyclonic blocking events over the study area. It demonstrates that changes in soil moisture in East-Central Europe point to the combined influence of many meteorological factors resulting from the atmospheric circulation, and are an indicator of the comprehensive relationships among those factors. The main factors affecting soil water content are precipitation and evapotranspiration, which in turn depend on air humidity, cloudiness, intensity of solar radiation and air temperature. The increase in the frequency and duration of sequences of days with blocking events in East-Central Europe has contributed to an increased probability of longer periods with soil moisture negative anomalies.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 11\",\"pages\":\"3850-3866\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8555\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8555\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8555","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Relations between selected elements of climate and an increase in soil moisture deficit in the warm half-year in East-Central Europe between 1971 and 2020
This paper presents an analysis of the relationships between soil moisture, cloud cover, solar radiation, air temperature and humidity, and precipitation during the warm half of the year in East-Central Europe over the years 1971–2020. The temporal and spatial variability of these meteorological elements is presented in association with the occurrence of anticyclonic blocking events over the study area. It demonstrates that changes in soil moisture in East-Central Europe point to the combined influence of many meteorological factors resulting from the atmospheric circulation, and are an indicator of the comprehensive relationships among those factors. The main factors affecting soil water content are precipitation and evapotranspiration, which in turn depend on air humidity, cloudiness, intensity of solar radiation and air temperature. The increase in the frequency and duration of sequences of days with blocking events in East-Central Europe has contributed to an increased probability of longer periods with soil moisture negative anomalies.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions