制造和装配误差对 2 米轻型反射镜均方根表面畸变的影响及其修正

IF 2.1 4区 物理与天体物理 Q2 OPTICS
Ping Jiang, Xiaoyu Wang, Kejun Wang, Xiaobo Li, Xun Yang
{"title":"制造和装配误差对 2 米轻型反射镜均方根表面畸变的影响及其修正","authors":"Ping Jiang, Xiaoyu Wang, Kejun Wang, Xiaobo Li, Xun Yang","doi":"10.3390/photonics11070653","DOIUrl":null,"url":null,"abstract":"The influence of fabrication and assembly errors on the surface distortion due to gravity of a 2 m primary mirror and its correction method are presented. The effect of fabrication errors on the surface distortion is verified by Monte Carlo analysis. The results show that, within the 46.3% confidence interval, the surface accuracy root mean square (RMS) caused by fabrication errors is more than 5.0 nm (indicator requirement). The sensitivity of mirror surface accuracy to the matching relationship between the flexible support axial assembly position and the inherent properties (neutral surface and center of gravity) of the mirror were analyzed. Then, the correction principle of the RMS was proposed based on the analysis result. The surface accuracy RMS of surface gravity distortion is sensitive to fabrication and assembly errors, which can be effectively corrected using a flexible support mounting technique. This new flexible support mounting technique replaces the conventional method with flexible supports having shims so that adjustments can be made during testing to counteract the gravitational distortion of the mirror surface. Astigmatic aberration due to gravitational changes is effectively reduced by selecting a suitable thickness of shim, and the relationship between the astigmatism and the thickness of shim was investigated using the finite element analysis method. Finally, the finite element analysis results showed that the optimal surface gravity accuracy of the mirror assembly could be obtained by adjusting the shim, while the other performance of the assembly was not affected.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Fabrication and Assembly Errors on the Root Mean Square Surface Distortion of a 2 m Lightweight Mirror and Its Correction\",\"authors\":\"Ping Jiang, Xiaoyu Wang, Kejun Wang, Xiaobo Li, Xun Yang\",\"doi\":\"10.3390/photonics11070653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of fabrication and assembly errors on the surface distortion due to gravity of a 2 m primary mirror and its correction method are presented. The effect of fabrication errors on the surface distortion is verified by Monte Carlo analysis. The results show that, within the 46.3% confidence interval, the surface accuracy root mean square (RMS) caused by fabrication errors is more than 5.0 nm (indicator requirement). The sensitivity of mirror surface accuracy to the matching relationship between the flexible support axial assembly position and the inherent properties (neutral surface and center of gravity) of the mirror were analyzed. Then, the correction principle of the RMS was proposed based on the analysis result. The surface accuracy RMS of surface gravity distortion is sensitive to fabrication and assembly errors, which can be effectively corrected using a flexible support mounting technique. This new flexible support mounting technique replaces the conventional method with flexible supports having shims so that adjustments can be made during testing to counteract the gravitational distortion of the mirror surface. Astigmatic aberration due to gravitational changes is effectively reduced by selecting a suitable thickness of shim, and the relationship between the astigmatism and the thickness of shim was investigated using the finite element analysis method. Finally, the finite element analysis results showed that the optimal surface gravity accuracy of the mirror assembly could be obtained by adjusting the shim, while the other performance of the assembly was not affected.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11070653\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070653","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了制造和装配误差对 2 米主镜重力导致的表面畸变的影响及其修正方法。通过蒙特卡罗分析验证了制造误差对表面变形的影响。结果表明,在 46.3% 的置信区间内,制造误差导致的表面精度均方根 (RMS) 超过 5.0 nm(指标要求)。分析了镜面精度对柔性支架轴向装配位置与镜面固有特性(中性面和重心)之间匹配关系的敏感性。然后,根据分析结果提出了均方根的修正原则。表面重力畸变的表面精度有效值对制造和装配误差很敏感,而采用柔性支撑安装技术可以有效地校正这些误差。这种新的柔性支架安装技术用带有垫片的柔性支架取代了传统方法,这样就可以在测试过程中进行调整,以抵消镜面的重力畸变。通过选择合适厚度的垫片,可有效减少重力变化引起的散光像差,并利用有限元分析方法研究了散光与垫片厚度之间的关系。最后,有限元分析结果表明,通过调整垫片可以获得反射镜组件的最佳表面重力精度,而组件的其他性能不受影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Fabrication and Assembly Errors on the Root Mean Square Surface Distortion of a 2 m Lightweight Mirror and Its Correction
The influence of fabrication and assembly errors on the surface distortion due to gravity of a 2 m primary mirror and its correction method are presented. The effect of fabrication errors on the surface distortion is verified by Monte Carlo analysis. The results show that, within the 46.3% confidence interval, the surface accuracy root mean square (RMS) caused by fabrication errors is more than 5.0 nm (indicator requirement). The sensitivity of mirror surface accuracy to the matching relationship between the flexible support axial assembly position and the inherent properties (neutral surface and center of gravity) of the mirror were analyzed. Then, the correction principle of the RMS was proposed based on the analysis result. The surface accuracy RMS of surface gravity distortion is sensitive to fabrication and assembly errors, which can be effectively corrected using a flexible support mounting technique. This new flexible support mounting technique replaces the conventional method with flexible supports having shims so that adjustments can be made during testing to counteract the gravitational distortion of the mirror surface. Astigmatic aberration due to gravitational changes is effectively reduced by selecting a suitable thickness of shim, and the relationship between the astigmatism and the thickness of shim was investigated using the finite element analysis method. Finally, the finite element analysis results showed that the optimal surface gravity accuracy of the mirror assembly could be obtained by adjusting the shim, while the other performance of the assembly was not affected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信