{"title":"使用计算均质化方法预测编织基纤维增强聚合物的极限电阻和疲劳性能","authors":"Junqiang Li, Haohui Xin, Youyou Zhang, Qinglin Gao, Hengyu Zhang","doi":"10.1108/ijsi-03-2024-0049","DOIUrl":null,"url":null,"abstract":"PurposeIn order to achieve the desired macroscopic mechanical properties of woven fiber reinforced polymer (FRP) materials, it is necessary to conduct a detailed analysis of their microscopic load-bearing capacity.Design/methodology/approachUtilizing the representative volume element (RVE) model, this study delves into how the material composition influences mechanical parameters and failure processes.FindingsTo study the ultimate strength of the materials, this study considers the damage situation in various parts and analyzes the stress-strain curves under uniaxial and multiaxial loading conditions. Furthermore, the study investigates the degradation of macroscopic mechanical properties of fiber and resin layers due to fatigue induced performance degradation. Additionally, the research explores the impact of fatigue damage on key material properties such as the elastic modulus, shear modulus and Poisson's ratio.Originality/valueBy studying the load-bearing mechanisms at different scales, a direct correlation is established between the macroscopic mechanical behavior of the material and the microstructure of woven FRP materials. This comprehensive analysis ultimately elucidates the material's mechanical response under conditions of fatigue damage.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultimate resistance and fatigue performance predictions of woven-based fiber reinforced polymers using a computational homogenization method\",\"authors\":\"Junqiang Li, Haohui Xin, Youyou Zhang, Qinglin Gao, Hengyu Zhang\",\"doi\":\"10.1108/ijsi-03-2024-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeIn order to achieve the desired macroscopic mechanical properties of woven fiber reinforced polymer (FRP) materials, it is necessary to conduct a detailed analysis of their microscopic load-bearing capacity.Design/methodology/approachUtilizing the representative volume element (RVE) model, this study delves into how the material composition influences mechanical parameters and failure processes.FindingsTo study the ultimate strength of the materials, this study considers the damage situation in various parts and analyzes the stress-strain curves under uniaxial and multiaxial loading conditions. Furthermore, the study investigates the degradation of macroscopic mechanical properties of fiber and resin layers due to fatigue induced performance degradation. Additionally, the research explores the impact of fatigue damage on key material properties such as the elastic modulus, shear modulus and Poisson's ratio.Originality/valueBy studying the load-bearing mechanisms at different scales, a direct correlation is established between the macroscopic mechanical behavior of the material and the microstructure of woven FRP materials. This comprehensive analysis ultimately elucidates the material's mechanical response under conditions of fatigue damage.\",\"PeriodicalId\":45359,\"journal\":{\"name\":\"International Journal of Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijsi-03-2024-0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-03-2024-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultimate resistance and fatigue performance predictions of woven-based fiber reinforced polymers using a computational homogenization method
PurposeIn order to achieve the desired macroscopic mechanical properties of woven fiber reinforced polymer (FRP) materials, it is necessary to conduct a detailed analysis of their microscopic load-bearing capacity.Design/methodology/approachUtilizing the representative volume element (RVE) model, this study delves into how the material composition influences mechanical parameters and failure processes.FindingsTo study the ultimate strength of the materials, this study considers the damage situation in various parts and analyzes the stress-strain curves under uniaxial and multiaxial loading conditions. Furthermore, the study investigates the degradation of macroscopic mechanical properties of fiber and resin layers due to fatigue induced performance degradation. Additionally, the research explores the impact of fatigue damage on key material properties such as the elastic modulus, shear modulus and Poisson's ratio.Originality/valueBy studying the load-bearing mechanisms at different scales, a direct correlation is established between the macroscopic mechanical behavior of the material and the microstructure of woven FRP materials. This comprehensive analysis ultimately elucidates the material's mechanical response under conditions of fatigue damage.