Mengqi Wang, Shihang Wang, Xinyu Li, Yang Feng, Jingran Wang, Shengtao Li
{"title":"热氧化老化交联聚乙烯的太赫兹域介电弛豫响应及机理研究","authors":"Mengqi Wang, Shihang Wang, Xinyu Li, Yang Feng, Jingran Wang, Shengtao Li","doi":"10.1049/hve2.12463","DOIUrl":null,"url":null,"abstract":"To further study the thermal‐oxidative ageing mechanism of crosslinked polyethylene (XLPE), the terahertz frequency domain dielectric parameters and relaxation phenomena of thermal‐oxidative aged XLPE are analysed using terahertz time domain spectroscopy. It is found that the real part of the terahertz dielectric constant increases with the increase of thermal‐oxidative ageing duration, and the imaginary part shows an overall upward trend. Relaxation of the complex dielectric constant of the aged XLPE samples is obvious. Through the second‐order Cole–Cole equation fitting, it is found that there are two relaxation processes around 0.15 and 1.5 THz, and the relaxation strength gradually increases with the ageing time. To explain this phenomena, microstructure changes and crystallisation behaviours are characterised using Fourier transform infrared spectrum and differential scanning calorimetry, respectively. It is suggested that the two relaxations may be caused by elastic dipole polarisation originating from the angular deflection of polar groups and stretching rotation of hydrogen bond. In addition, by comparing the relaxation strength in different temperatures, the source of the relaxation process is further confirmed.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the terahertz domain dielectric relaxation response and mechanism of thermal‐oxidative aged cross‐linked polyethylene\",\"authors\":\"Mengqi Wang, Shihang Wang, Xinyu Li, Yang Feng, Jingran Wang, Shengtao Li\",\"doi\":\"10.1049/hve2.12463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To further study the thermal‐oxidative ageing mechanism of crosslinked polyethylene (XLPE), the terahertz frequency domain dielectric parameters and relaxation phenomena of thermal‐oxidative aged XLPE are analysed using terahertz time domain spectroscopy. It is found that the real part of the terahertz dielectric constant increases with the increase of thermal‐oxidative ageing duration, and the imaginary part shows an overall upward trend. Relaxation of the complex dielectric constant of the aged XLPE samples is obvious. Through the second‐order Cole–Cole equation fitting, it is found that there are two relaxation processes around 0.15 and 1.5 THz, and the relaxation strength gradually increases with the ageing time. To explain this phenomena, microstructure changes and crystallisation behaviours are characterised using Fourier transform infrared spectrum and differential scanning calorimetry, respectively. It is suggested that the two relaxations may be caused by elastic dipole polarisation originating from the angular deflection of polar groups and stretching rotation of hydrogen bond. In addition, by comparing the relaxation strength in different temperatures, the source of the relaxation process is further confirmed.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.12463\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.12463","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Study on the terahertz domain dielectric relaxation response and mechanism of thermal‐oxidative aged cross‐linked polyethylene
To further study the thermal‐oxidative ageing mechanism of crosslinked polyethylene (XLPE), the terahertz frequency domain dielectric parameters and relaxation phenomena of thermal‐oxidative aged XLPE are analysed using terahertz time domain spectroscopy. It is found that the real part of the terahertz dielectric constant increases with the increase of thermal‐oxidative ageing duration, and the imaginary part shows an overall upward trend. Relaxation of the complex dielectric constant of the aged XLPE samples is obvious. Through the second‐order Cole–Cole equation fitting, it is found that there are two relaxation processes around 0.15 and 1.5 THz, and the relaxation strength gradually increases with the ageing time. To explain this phenomena, microstructure changes and crystallisation behaviours are characterised using Fourier transform infrared spectrum and differential scanning calorimetry, respectively. It is suggested that the two relaxations may be caused by elastic dipole polarisation originating from the angular deflection of polar groups and stretching rotation of hydrogen bond. In addition, by comparing the relaxation strength in different temperatures, the source of the relaxation process is further confirmed.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf