具有中心-半径阶的区间值凸随机过程的分数赫米特-哈达玛-默塞尔式不等式及其在熵和信息论中的相关应用

Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, A. Kashuri
{"title":"具有中心-半径阶的区间值凸随机过程的分数赫米特-哈达玛-默塞尔式不等式及其在熵和信息论中的相关应用","authors":"Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, A. Kashuri","doi":"10.3390/fractalfract8070408","DOIUrl":null,"url":null,"abstract":"We propose a new definition of the γ-convex stochastic processes (CSP) using center and radius (CR) order with the notion of interval valued functions (C.RI.V). By utilizing this definition and Mean-Square Fractional Integrals, we generalize fractional Hermite–Hadamard–Mercer-type inclusions for generalized C.RI.V versions of convex, tgs-convex, P-convex, exponential-type convex, Godunova–Levin convex, s-convex, Godunova–Levin s-convex, h-convex, n-polynomial convex, and fractional n-polynomial (CSP). Also, our work uses interesting examples of C.RI.V(CSP) with Python-programmed graphs to validate our findings using an extension of Mercer’s inclusions with applications related to entropy and information theory.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"138 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory\",\"authors\":\"Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, A. Kashuri\",\"doi\":\"10.3390/fractalfract8070408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new definition of the γ-convex stochastic processes (CSP) using center and radius (CR) order with the notion of interval valued functions (C.RI.V). By utilizing this definition and Mean-Square Fractional Integrals, we generalize fractional Hermite–Hadamard–Mercer-type inclusions for generalized C.RI.V versions of convex, tgs-convex, P-convex, exponential-type convex, Godunova–Levin convex, s-convex, Godunova–Levin s-convex, h-convex, n-polynomial convex, and fractional n-polynomial (CSP). Also, our work uses interesting examples of C.RI.V(CSP) with Python-programmed graphs to validate our findings using an extension of Mercer’s inclusions with applications related to entropy and information theory.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"138 39\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8070408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用中心和半径(CR)阶与区间值函数(C.RI.V)的概念,提出了 γ 凸随机过程(CSP)的新定义。利用这一定义和均方分式积分,我们为凸函数、tgs-凸函数、P-凸函数、指数型凸函数、Godunova-Levin 凸函数、s-凸函数、Godunova-Levin s-凸函数、h-凸函数、n-多项式凸函数和分式 n-多项式(CSP)的广义 C.RI.V 版本推广了分式 Hermite-Hadamard-Mercer 型夹杂。此外,我们的工作还使用了 C.RI.V(CSP)与 Python 编程图的有趣实例,利用与熵和信息论相关应用的梅塞尔夹杂的扩展来验证我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory
We propose a new definition of the γ-convex stochastic processes (CSP) using center and radius (CR) order with the notion of interval valued functions (C.RI.V). By utilizing this definition and Mean-Square Fractional Integrals, we generalize fractional Hermite–Hadamard–Mercer-type inclusions for generalized C.RI.V versions of convex, tgs-convex, P-convex, exponential-type convex, Godunova–Levin convex, s-convex, Godunova–Levin s-convex, h-convex, n-polynomial convex, and fractional n-polynomial (CSP). Also, our work uses interesting examples of C.RI.V(CSP) with Python-programmed graphs to validate our findings using an extension of Mercer’s inclusions with applications related to entropy and information theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信