H. A. Alburaih, M. Zia Ur Rehman, M. U. Saeed, N. A. Noor, M. S. H.-E, Dr. Yasir Saeed
{"title":"通过应变工程对二维卤化铜和卤化银的光电和光催化特性进行 DFT 研究","authors":"H. A. Alburaih, M. Zia Ur Rehman, M. U. Saeed, N. A. Noor, M. S. H.-E, Dr. Yasir Saeed","doi":"10.1149/2162-8777/ad620d","DOIUrl":null,"url":null,"abstract":"\n The results show that all the studied semiconductors have indirect bandgap while under the strain of (−8% to +8%), the bandgap has changed differently. Projected density of states revealed that CBM and VBM are mainly contributed by p-orbital and d-orbital of Cu-atom respectively in the case of all Copper halides (CuCl, CuBr, and CuI). Similarly, in the case of Silver halides (AgCl, AgBr, and AgI) CBM and VBM are mainly contributed by p- orbital and d-orbital of Ag-atom respectively. Phonon band structures of all unstrained monolayers are thermodynamically stable. The computed real part ε 1 (ω) and the imaginary part ε 2 (ω) of dielectric function revealed that CuCl and CuBr are suitable for the development of devices that may work in the infrared range while other materials such as CuI, AgCl, AgBr, and AgI are suitable for the development of devices that may work in the visible range. Both E V BM and E CBM in CuCl, CuBr, CuI, AgCl, and AgBr (ML) attain favorable positions that’s why these materials are appropriate for water splitting at pH=0 while AgI (ML) is suitable for the reduction of water but not for oxidati","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT Study of Optoelectronic and Photo-Catalytic Properties in 2D Copper and Silver Halides through Strain Engineering\",\"authors\":\"H. A. Alburaih, M. Zia Ur Rehman, M. U. Saeed, N. A. Noor, M. S. H.-E, Dr. Yasir Saeed\",\"doi\":\"10.1149/2162-8777/ad620d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The results show that all the studied semiconductors have indirect bandgap while under the strain of (−8% to +8%), the bandgap has changed differently. Projected density of states revealed that CBM and VBM are mainly contributed by p-orbital and d-orbital of Cu-atom respectively in the case of all Copper halides (CuCl, CuBr, and CuI). Similarly, in the case of Silver halides (AgCl, AgBr, and AgI) CBM and VBM are mainly contributed by p- orbital and d-orbital of Ag-atom respectively. Phonon band structures of all unstrained monolayers are thermodynamically stable. The computed real part ε 1 (ω) and the imaginary part ε 2 (ω) of dielectric function revealed that CuCl and CuBr are suitable for the development of devices that may work in the infrared range while other materials such as CuI, AgCl, AgBr, and AgI are suitable for the development of devices that may work in the visible range. Both E V BM and E CBM in CuCl, CuBr, CuI, AgCl, and AgBr (ML) attain favorable positions that’s why these materials are appropriate for water splitting at pH=0 while AgI (ML) is suitable for the reduction of water but not for oxidati\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad620d\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad620d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
结果表明,所有研究的半导体都具有间接带隙,而在应变(-8% 到 +8%)下,带隙发生了不同的变化。投影状态密度显示,在所有卤化铜(CuCl、CuBr 和 CuI)中,CBM 和 VBM 主要分别由铜原子的 p 轨道和 d 轨道贡献。同样,对于卤化银(AgCl、AgBr 和 AgI),CBM 和 VBM 分别主要由 Ag 原子的 p 轨道和 d 轨道贡献。所有未受约束单层的声带结构在热力学上都是稳定的。计算得出的介电函数实部ε 1 (ω)和虚部ε 2 (ω)表明,CuCl 和 CuBr 适合开发可在红外范围工作的器件,而其他材料如 CuI、AgCl、AgBr 和 AgI 则适合开发可在可见光范围工作的器件。CuCl、CuBr、CuI、AgCl 和 AgBr(ML)中的 E V BM 和 E CBM 都达到了有利的位置,这就是为什么这些材料适合在 pH=0 的条件下进行水分裂,而 AgI(ML)适合还原水,但不适合氧化水。
A DFT Study of Optoelectronic and Photo-Catalytic Properties in 2D Copper and Silver Halides through Strain Engineering
The results show that all the studied semiconductors have indirect bandgap while under the strain of (−8% to +8%), the bandgap has changed differently. Projected density of states revealed that CBM and VBM are mainly contributed by p-orbital and d-orbital of Cu-atom respectively in the case of all Copper halides (CuCl, CuBr, and CuI). Similarly, in the case of Silver halides (AgCl, AgBr, and AgI) CBM and VBM are mainly contributed by p- orbital and d-orbital of Ag-atom respectively. Phonon band structures of all unstrained monolayers are thermodynamically stable. The computed real part ε 1 (ω) and the imaginary part ε 2 (ω) of dielectric function revealed that CuCl and CuBr are suitable for the development of devices that may work in the infrared range while other materials such as CuI, AgCl, AgBr, and AgI are suitable for the development of devices that may work in the visible range. Both E V BM and E CBM in CuCl, CuBr, CuI, AgCl, and AgBr (ML) attain favorable positions that’s why these materials are appropriate for water splitting at pH=0 while AgI (ML) is suitable for the reduction of water but not for oxidati
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.