用于可编程液体处理的连接三维多面体框架

Yiyuan Zhang, Zhandong Huang, Feifei Qin, Hongzhou Wang, Kai Cui, Kun Guo, Zheren Cai, Xiaobing Cai, Junfeng Xiao, Jan Carmeliet, Jinjia Wei, Yanlin Song, Jun Yang, Liqiu Wang
{"title":"用于可编程液体处理的连接三维多面体框架","authors":"Yiyuan Zhang, Zhandong Huang, Feifei Qin, Hongzhou Wang, Kai Cui, Kun Guo, Zheren Cai, Xiaobing Cai, Junfeng Xiao, Jan Carmeliet, Jinjia Wei, Yanlin Song, Jun Yang, Liqiu Wang","doi":"10.1038/s44286-024-00090-w","DOIUrl":null,"url":null,"abstract":"Human civilization relies heavily on the ability to precisely process liquids. Switching between liquid capture and release plays a fundamental role in the handling of various liquids, with applications that demand reversible, spatially and temporally precise, volumetrically accurate and programmable control over the liquid, independent of the details of the employed solid tools and processed liquids. However, current fluidic techniques do not fully meet these requirements. Here we present connected polyhedral frames to effectively address this challenge by tailoring liquid continuity between frames to dictate the liquid capture or release of individual frames, with an overall network that is readily switchable locally, dynamically and reversibly. Each frame captures or releases liquids, independent of its base materials, structures and processed liquids. The connected polyhedral frames are a versatile tool that enables many important functions including three-dimensional (3D) programmable patterning of liquids, 3D spatiotemporal control of concentrations of multiple materials, packaging of 3D liquid arrays and large-scale manipulation of multiple liquids, thus considerably advancing many fields, including interface science and soft materials. Switching between liquid capture and release is important in handling various liquids. Here the authors present connected polyhedral frames that form a network of units that capture or release liquid that is readily switchable locally, dynamically and reversibly, thus functioning as a versatile fluidic processor.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00090-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Connected three-dimensional polyhedral frames for programmable liquid processing\",\"authors\":\"Yiyuan Zhang, Zhandong Huang, Feifei Qin, Hongzhou Wang, Kai Cui, Kun Guo, Zheren Cai, Xiaobing Cai, Junfeng Xiao, Jan Carmeliet, Jinjia Wei, Yanlin Song, Jun Yang, Liqiu Wang\",\"doi\":\"10.1038/s44286-024-00090-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human civilization relies heavily on the ability to precisely process liquids. Switching between liquid capture and release plays a fundamental role in the handling of various liquids, with applications that demand reversible, spatially and temporally precise, volumetrically accurate and programmable control over the liquid, independent of the details of the employed solid tools and processed liquids. However, current fluidic techniques do not fully meet these requirements. Here we present connected polyhedral frames to effectively address this challenge by tailoring liquid continuity between frames to dictate the liquid capture or release of individual frames, with an overall network that is readily switchable locally, dynamically and reversibly. Each frame captures or releases liquids, independent of its base materials, structures and processed liquids. The connected polyhedral frames are a versatile tool that enables many important functions including three-dimensional (3D) programmable patterning of liquids, 3D spatiotemporal control of concentrations of multiple materials, packaging of 3D liquid arrays and large-scale manipulation of multiple liquids, thus considerably advancing many fields, including interface science and soft materials. Switching between liquid capture and release is important in handling various liquids. Here the authors present connected polyhedral frames that form a network of units that capture or release liquid that is readily switchable locally, dynamically and reversibly, thus functioning as a versatile fluidic processor.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44286-024-00090-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00090-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00090-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类文明在很大程度上依赖于精确处理液体的能力。在处理各种液体时,液体捕获和释放之间的切换起着根本性的作用,其应用要求对液体进行可逆的、空间和时间上精确的、体积上精确的和可编程的控制,而与所使用的固体工具和处理过的液体的细节无关。然而,目前的流体技术并不能完全满足这些要求。在此,我们提出了连接的多面体框架,通过调整框架之间的液体连续性来决定单个框架的液体捕获或释放,从而有效应对这一挑战。每个框架都能捕获或释放液体,不受其基础材料、结构和加工液体的影响。连接的多面体框架是一种多功能工具,可实现许多重要功能,包括液体的三维(3D)可编程图案化、多种材料浓度的三维时空控制、三维液体阵列的封装以及多种液体的大规模操作,从而大大推动了界面科学和软材料等许多领域的发展。在处理各种液体时,液体捕获和释放之间的切换非常重要。在这里,作者介绍了连接起来的多面体框架,这些框架形成了一个单元网络,可以捕获或释放液体,并可随时进行局部、动态和可逆的切换,从而发挥多功能流体处理器的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Connected three-dimensional polyhedral frames for programmable liquid processing

Connected three-dimensional polyhedral frames for programmable liquid processing
Human civilization relies heavily on the ability to precisely process liquids. Switching between liquid capture and release plays a fundamental role in the handling of various liquids, with applications that demand reversible, spatially and temporally precise, volumetrically accurate and programmable control over the liquid, independent of the details of the employed solid tools and processed liquids. However, current fluidic techniques do not fully meet these requirements. Here we present connected polyhedral frames to effectively address this challenge by tailoring liquid continuity between frames to dictate the liquid capture or release of individual frames, with an overall network that is readily switchable locally, dynamically and reversibly. Each frame captures or releases liquids, independent of its base materials, structures and processed liquids. The connected polyhedral frames are a versatile tool that enables many important functions including three-dimensional (3D) programmable patterning of liquids, 3D spatiotemporal control of concentrations of multiple materials, packaging of 3D liquid arrays and large-scale manipulation of multiple liquids, thus considerably advancing many fields, including interface science and soft materials. Switching between liquid capture and release is important in handling various liquids. Here the authors present connected polyhedral frames that form a network of units that capture or release liquid that is readily switchable locally, dynamically and reversibly, thus functioning as a versatile fluidic processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信